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Abstract

Nonlinearities embedded in the standard New-Keynesian model show that a welfare-
maximizing policymaker should behave in line with a contractionary bias, fearing more
expansions in output and inflation rather than contractions. On the contrary, the
aggregate-supply equation implies that any upward pressure coming from real marginal
costs does not necessarily push up inflation. Once these two forces are combined in
the optimal policy, an overall expansionary bias emerges. The nonlinearities of the AS
equation combined with changes in volatility can be responsible for a flattening in the
estimated linear Phillips curve.



1 Introduction

The most popular framework used for monetary policy analysis is built on objectives for
output and inflation that are usually symmetric with respect to targets and on a linear
model economy, as in Galì (2008) and Woodford (2003). Output and inflation fluctuate
symmetrically around their steady-state levels and prescriptions for what monetary policy
should do are identical irrespective of whether the economy is experiencing expansions or
contractions.
Recent literature has shown that macroeconomic variables such as output, inflation and

unemployment display some skewness and that business cycles can be asymmetric both in
the size and duration of expansions and contractions, e.g. Dupraz et al. (2019) and Salgado
et al. (2019). Moreover, central banks around the world repeatedly miss their inflation target
since inflation constantly proves to be on a lower level. This also suggests that there could
be some bias in their preferences, nonlinearity in the model economy or asymmetries in the
shocks hitting the economy.1

Motivated by these facts, this paper studies asymmetries in monetary policy by uncovering
non-linear effects behind the standard New-Keynesian model. To this end, it exploits a cubic
approximation of welfare and a quadratic approximation of the model economy, as opposed to
the standard quadratic-linear framework of Benigno and Woodford (2003), Woodford (2003)
and the related literature.
The results are the following: A policymaker maximizing consumers’ welfare should

fear more expansions in output and inflation rather than contractions. Therefore, prefer-
ences show a contractionary bias. On the contrary, by accounting for non-linear effects, the
aggregate-supply equation implies that any upward pressure coming from real marginal costs
does not necessarily result in an upward pressure on inflation. Therefore, there could be a
natural tendency for the economy to display a deflationary bias. Once these two forces are
combined in the optimal policy, an overall expansionary bias emerges implying a relatively
higher inflation following both positive or negative mark-up shocks with respect to what
would have been implied by the standard linear-quadratic analysis.
Finally, we use our framework to provide a possible explanation for the flattening of the

U.S. Phillips curve. In our analysis, this can be due to an omitted-variable problem when the
data generating process features some nonlinearities. An econometrician estimating a linear
Phillips curve would indeed omit all second order terms which could be responsible for the
flattening of the curve in periods of high volatility, something that has been observed in the
data after the great financial crisis. Indeed, our non-linear (second-order approximated) New-
Keynesian aggregate-supply equation shows that current and past deviations of inflation with
respect to the target can weaken the inflation-output trade-off. Bygones are not bygones.
If an economy is hit by large shocks pushing inflation below target, a larger output gap is
required to produce the same movements in inflation had inflation, instead, always been on
target.
This paper is related to recent literature that has investigated asymmetries in the business

cycle. Dupraz et al. (2019) argue for a plucking model of the business cycle based on
downward wage rigidities to explain a skewed empirical distribution of unemployment. The

1Bec et al. (2003) have found asymmetries in the monetary policy reaction function even in the past.
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New-Keynesian literature has also underlined possible asymmetries in policies due to the zero-
lower bound, as in Eggertsson andWoodford (2003), and in combination with downward-wage
rigidities, as in Coibion et al. (2012). Our analysis is complementary to all these works since
we study nonlinearities already built into the standard framework rather than adding other
asymmetries that potentially could work to amplify our results.
Castillo and Montoro (2008) is a closely related work since they use a second-order ap-

proximation of a standard New Keynesian model to study the asymmetric response of output
and inflation, but only to an interest-rate shock. To account for the evidence showing that
monetary policy is more effective in upturns, they also assume nonhomotheticity in prefer-
ences. Castillo et al. (2005), instead, uses a second-order approximation of the standard
New-Keynesian model to explain the path of inflation through oil shocks.
None of the above works has analyzed optimal monetary policy in a non-linear environ-

ment like we do. The only exception is the work of Gross and Hansen (2020), who provided
a general theory of quadratic-cubic approximations, applying it to a different version of the
New Keynesian model and emphasizing the importance of asymmetries in wage rigidities.
Their work and ours have been conducted in an independent way.2

Moreover, we are also contributing to the literature on optimal targeting rules spurred
by the work of Giannoni and Woodford (2017) since we have extended their analysis to
a cubic-quadratic approximation, showing how second-order terms can affect the standard
linear targeting rule discussed in the literature, as in Svensson (1999).
Finally, our paper is related to the recent literature that has investigated the possible

causes of the flattening in the Phillips curve by suggesting an alternative and complementary
explanation to those given in the literature (see among others Blanchard (2016), Coibion
and Gorodnichenko (2012) and Hazell et al. (2020)). Coibion and Gorodnichenko (2012)
argue that the missing disinflation following the great financial crisis could be explained by
a rise in inflation expectations between 2009 and 2011. Blanchard (2016) and Hazell et al.
(2020) find a modest decline in the Phillips curve in the last two decades and attribute the
stability of inflation to a firm anchoring of inflation expectations. Our analysis suggests that
estimates of the Phillips curve could be downward biased when volatility increases, since in
this case the relation between real marginal costs and inflation weakens when nonlinearities
are important.
Our paper is structured as follows. Section 2 presents the model. Section 3 studies

the asymmetries in monetary policy resulting from preferences, from the aggregate-supply
equation and from the optimal targeting rule, respectively. Section 4 studies the optimal
asymmetric policy following mark-up shocks. Section 5 compares the path of inflation and
output gap in the U.S. economy with the counterfactual, in which optimal policy is conducted
using either the quadratic-cubic approximation or the standard linear-quadratic approxima-
tion. Section 2 investigates the possible flattening of the Phillips curve because of omitted
second-order terms in the estimation. Section 7 concludes the paper.

2As soon as we became aware of their work, at the end of October 2020, we corresponded with them by
sending our draft paper, which was similar to the current version, but with preliminary ideas and results only
for the current Sections 5 and 6.
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2 Model

We present our analysis via the benchmark New Keynesian model. Here we outline the
building blocks of the model by referring to the literature for a more exhaustive treatment.3

A representative agent maximizes expected intertemporal utility

Et0

∞∑
t=t0

βt−t0

[
lnCt −

N1+φ
t

1 + φ

]
(1)

in which β, with 0 < β < 1, is the intertemporal discount factor, Ct is a consumption basket
of goods and Nt is hours worked; φ, with φ > 0 , is the inverse of the Frisch elasticity of
labor supply. The consumption bundle Ct is a Dixit-Stiglitz aggregator of a continuum of
goods, with measure one, produced in the economy. The elasticity of substitution among
these goods is σ. Financial markets are assumed to be complete and the representative agent
chooses consumption, labor and takes portfolio decisions to maximize its utility under an
appropriately-defined budget constraint and borrowing limit.
The first-order conditions of the household’s optimization problem imply an Euler equa-

tion, which links current and future consumption to the real rate. Using equilibrium in the
goods markets, i.e. consumption Ct is equal to aggregate output Yt, the Euler equation can
be written as

Y −ρt = β(1 + it)Et

{
Pt
Pt+1

Y −ρt+1

}
(2)

where Pt is the consumption-based price index and it is the risk-free nominal interest rate.
Labor supply entails equalization of the marginal rate of substitution between consumption
and labor to the real wage.
Turning to the supply side, there is a continuum of firms, each producing one of the variety

of goods consumed in the economy. A generic firm j produces goods using the technology
yt(j) = AtNt(j), where At is a productivity shock common to all firms. Firms sell goods in a
market characterized by monopolistic competition, facing the demand yt(j) = (pt(j)/Pt)

−σYt,
where pt(j) is the price of the variety of good j. The price-setting mechanism follows the
Calvo model in which a fraction (1− α) of firms is randomly selected to change their prices
independently of the last time they reset them. In each period all prices are adjusted to the
(gross) inflation target Π. Given the preference specification assumed, the supply side of the
model implies an aggregate supply equation of the form(

1− α
(

Πt
Π

)σ−1

1− α

) 1
σ−1

=
Et
∑∞

T=t(αβ)T−t
(

PT
PtΠT−t

)σ−1

Et
∑∞

T=t(αβ)T−tµT
N1+φ
T

∆T

(
PT

PtΠT−t

)σ , (3)

where Πt is the gross inflation rate, defined as Πt ≡ Pt/Pt−1; µt is a mark-up shock whose
variations depend on changes in distortionary taxes levied on firms’ labor costs; ∆t is an
index of price dispersion defined by

∆t ≡
1∫

0

(
pt(j)

Pt

)−σ
dj,

3See Galì (2008) and Woodford (2003).
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which follows the law of motion

∆t ≡ α∆t−1

(
Πt

Π

)σ
+ (1− α)

(
1− α

(
Πt
Π

)σ−1

1− α

) σ
σ−1

. (4)

We can also express the AS equation (3) in terms of output by noting the relationship between
aggregate employment and output

Nt =

1∫
0

Nt(j)dj =
1

At

1∫
0

yt(j)dj =
Yt
At

∆t. (5)

The model then consists of an aggregate demand equation (2) and an aggregate supply
equation (3), which together with the law of motion of price dispersion and a monetary-
policy rule determine the path of inflation, output and interest rates given the two stochastic
disturbances: a productivity and a mark-up shock.

3 Asymmetries in monetary policy

This Section is divided into three parts: the first studies asymmetries built into the welfare
function; the second in the aggregate-supply equation; the third in the optimal targeting
rule.

3.1 Asymmetries in welfare

We are interested in evaluating policies according to the welfare of the representative agent
following the Ramsey approach to optimal policy. To account for nonlinearities in the re-
sponse of the macroeconomic variables, an approximation of optimal policy to an order higher
than the first is needed: a second-order approximation is suffi cient.
The solution of the Ramsey optimal policy problem is, in general, time-inconsistent when

the constraints of the problem contain expectations on future variables. However, it can
become time-consistent if additional commitments are considered at time zero, as in the
timeless-perspective approach of Woodford (2003). In this case, Benigno and Woodford
(2013) has shown the equivalence between the solution obtained by maximizing the appro-
priate quadratic approximation of welfare under a linear approximation of the constraints and
the one obtained by just linearizing the first-order conditions of the optimal policy problem.
However, such a solution does not display any role for asymmetric responses of the variables
of interest to shock or even a distinct role for volatility shocks. Indeed, in a quadratic approx-
imation of welfare, deviations from targets in the objective function are equally penalized
independently of the sign.
The results of Benigno and Woodford (2013) can still be helpful for our analysis since

they can be extended to higher-order approximations. In our case, a second-order approx-
imation of the optimal policy problem can be equivalently obtained as the solution of a
cubic-quadratic approximation method in which an appropriate third-order approximation
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of welfare is maximized under a second-order approximation of the constraints.4 In this Sec-
tion we use this insight to get an idea of the shape of the objective and constraints, and
postpone the numerical analysis to Section 4.
We make a simplifying assumption, common to the literature, in approximating the model

around the effi cient steady state, an assumption that we maintain throughout the paper.
First, note that we can write (1) as

Et0

∞∑
t=t0

βt−t0

{
ln(NtAt)−

N1+φ
t

1 + φ
− ln ∆t

}
(6)

in which we have used equilibrium in the goods market, Yt = Ct, and (5) to substitute Yt for
Nt.
Taking a third-order log-linear approximation of the above utility around the effi cient

steady state, and disregarding terms independent of policy and the higher-order ones, we get
the following intertemporal loss function

Lto = Et0

∞∑
t=t0

βt−t0
[

1

2
n2
t +

1

6
(1 + φ)n3

t +
ln ∆t

1 + φ

]
(7)

in which nt is at the same time the log of the employment level and the employment gap,
i.e. the deviations of the log of employment with respect to the effi cient level. To see that
ñt = ln Ñt = 0 is the effi cient employment level, note that in the effi cient allocation the
marginal rate of substitution between consumption and labor is equal to productivity:

Ñφ
t

C̃−1
t

= At,

which, given equilibrium in goods market, Yt = Ct, and the linear production technology,
Yt = AtNt, implies that Ñt = 1. The important novelty shown by a third-order approximation
is the additional cubic term in the employment gap, as shown by the loss function (7). It
implies that positive deviations of employment from the effi cient level are more costly than
negative ones. Once nonlinearities are considered, a policymaker maximizing households’
welfare is subject to a contractionary bias and is averse to expansions, being more penalized
by increases in employment rather than falls. The last term in the approximation of the
utility captures the costs of price dispersion, which are always non-negative since ∆t ≥ 1.
The loss function (7) can also be expressed in terms of the output gap, yt, noting that

yt = nt − ∆t.
5 Since ∆t is at least a second-order term in the norm of the shock, the loss

function can be written —disregarding terms of order higher than the third —as

Lto = Et0

∞∑
t=t0

βt−t0
[

1

2
(yt + ∆t)

2 +
1

6
(1 + φ)y3

t +
ln ∆t

1 + φ

]
. (8)

Comparing the above loss function with the standard quadratic one in the literature, it
already displays a slightly different form by just looking at quadratic terms, since ∆t appears

4Gross and Hansen (2020) show this equivalence formally.
5Note that with log utility the effi cient level of output is given by Yt = At.
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in the first, quadratic, term on the right-hand side. It can indeed be neglected in a second-
order approximation but not in a third-order approximation. The price dispersion term is
non-negative and is function of the current and past squared deviations of inflation from the
target, as will be shown shortly. This implies that deviations of inflation from the target tilt
the output-gap target to negative values. Moreover, the second term on the right-hand side
of (8), the cubic term, further reinforces the aversion to expansions built into preferences.
We now turn to characterizing the third-order approximation of the price dispersion term

defined in (4). In the Appendix we show that it is given by

∆̂t = α∆̂t−1 +
1

2

σα

1− α(πt − π)2 + ασ∆̂t−1(πt − π) +
1

6

σα

1− αγ(πt − π)3, (9)

where γ is defined as

γ ≡ (σ − 1)

(1− α)
+ σ − α

1− α,

which is in general positive, at least for σ ≥ 2. We have used the following definitions
πt ≡ lnPt/Pt−1 and π ≡ ln Π. Note that price dispersion is zero up to first-order terms
and depends on the squared deviations of inflation with respect to the target only when
looking at second-order terms. These results are known in the literature. The third-order
terms are instead captured by the last two addenda on the right-hand side of equation (9).
Note, indeed, that ∆̂t is at least of a second order in the norm of the shocks and therefore
∆̂t−1(πt − π) is a third-order term. In general, upward movements of inflation with respect
to the target contribute positively to price dispersion in contrast to downward movements.
When inserting (9) into the welfare function, this asymmetry results in a general aversion to
overshooting the inflation target. We then obtain

Lto = Et0

∞∑
t=t0

βt−t0
{

1

2
n2
t +

1

6
(1 + φ)n3

t +
1

2

σ

κ
(πt − π)2 +

σ

κ
(1− α)∆̂t−1(πt − π) +

1

6

σ

κ
γ(πt − π)3

}
.

(10)
Accounting for asymmetries in the loss function leads to important novelties should a benev-
olent policymaker care about upward or downward deviations of employment or inflation
from the target. What is implicit in the above micro-founded loss function is therefore
an aversion to overshooting both the effi cient level of employment and the inflation target.
Thus, according to this welfare-based loss function, a policymaker should behave following a
contractionary bias.

3.2 Asymmetries in the AS equation

Evaluating optimal policy requires understanding the trade-off between employment and
inflation implicit in the AS equation (3). To evaluate a third-order approximation of welfare, a
second-order approximation of the constraints is suffi cient. Moreover, this approximation can
show asymmetries in the trade-off that are not present in the standard linear approximation.
In the Appendix, following Benigno and Woodford (2003), we show that a second-order

approximation of (3) delivers the following set of equations

Vt + (1− α)∆̂t−1 = κnt + ut +
κ

2
(nt + ut)

2 + βEt[Vt+1 + (1− α)∆̂t] (11)
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where κ is given by

κ ≡ 1− α
α

(1− αβ)(1 + φ)

and ut is a reparametrization of the mark-up shock with ut ≡ κµ̂t/(1 + φ).
Note that Vt is defined by the following equation

Vt ≡ (πt − π) +
1

2

[
1 + σ

α

1− α

]
(πt − π)2 + (σ − 1)(πt − π)Xt (12)

with Xt following
Xt = (πt − π) + αβEtXt+1. (13)

To get an idea of the AS relationship first note that firms’real marginal costs are given by

mct =
Wt

AtPt
= µtN

1+φ
t

and that the deviation of the gross inflation rate from the steady state, in a second-order
approximation, is given by

Πt − Π

Π
= (πt − π) +

1

2
(πt − π)2.

Using these observations, we can write (11) as

Πt − Π

Π
= kEt

{ ∞∑
T=t

βT−t
mcT −mc

mc

}
− (1−α)∆̂t−1−

σ

2

α

1− α(πt− π)2− (σ− 1)(πt− π)Xt,

for some parameter k and where mc is the steady-state real marginal cost. The first term on
the right-hand side of the above equation is in line with the literature, which mainly relies
on first-order approximations, saying that deviations of inflation from the steady state are
explained by deviations of the real marginal cost from its steady state. Factors that push up
the real marginal cost, as a mark-up shock or an increase in the employment gap, lead to a
rise of inflation above the target. However, a second-order approximation shows additional
terms affecting the inflation rate. The first term, which is the second on the right-hand side of
the above equation, shows that past deviations of inflation from the target in either directions
produce a downward pressure on current inflation. Indeed, note that up to a second-order
approximation, price dispersion follows the law of motion

∆̂t = α∆̂t−1 +
1

2

σα

1− α(πt − π)2. (14)

The third term on the right-hand side also adds downward pressure on current inflation if
the latter deviates from the target. Finally, the last term can also reduce current inflation
if there is a positive correlation between the current deviations of inflation from target and
its expected present-discounted value captured by the term Xt. Overall, these additional
terms, which can only be uncovered by a second-order approximation of the AS equation,
imply that any upward pressure coming from real marginal costs does not necessarily result
in an upward pressure on inflation. There could be a disinflationary bias coming from past,
present and future deviations of inflation from the target. Interestingly, the AS equation
shows that missing the inflation target in the past leads to downward pressures on current
inflation, making it even harder to achieve the target, unless there is more pressure coming
from real marginal costs. Bygones are not bygones.
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3.3 Asymmetries in the optimal targeting rule

Two interesting results have emerged from the previous Sections. First, asymmetries in the
loss function show a contractionary bias both with respect to inflation and the employment
gap. Second, asymmetries in the AS equation show that the relationship between real mar-
ginal costs and inflation can become weaker and that deviations of inflation from target can
put a downward pressure on inflation. Another way to obtain these results is by having the
contractionary bias in the loss function be lessened by the disinflationary pressure built in
the AS equation. What policymakers should then do can only be understood by solving the
optimal policy problem.
As already discussed, a second-order approximation of the optimal policy can be obtained

by minimizing the loss function (10) under constraints (11), (12), (13) and (14).
A first result can be directly seen without taking first-order conditions. Following pro-

ductivity shocks, it is optimal to set inflation to target at all times and stabilize employment
and output at their effi cient level. This confirms the findings in the literature. Trade-offs
arise only when there are mark-up shocks.
An intuitive way to study this trade-off is to derive the optimal targeting rule, as in

Giannoni and Woodford (2017). In the Appendix, we show that it takes the following form

σ(πt − π) + (yt − yt−1) = Tt (15)

which looks very similar to the one they obtain in a linear-quadratic framework, except for the
additional term on the right-hand side, Tt, which is indeed zero in a first-order approximation.
With a zero Tt, an overshoot of the inflation target is optimal provided the output gap
falls from the previous period. A non-zero value of Tt can change this result in interesting
directions. A positive Tt can either mitigate the output-gap contraction or allow for more
expansion in inflation. It then leads to an expansionary bias. On the contrary, a negative Tt
requires a larger fall in output for a given overshoot of inflation with respect to its target. It
acts as a contractionary bias.
In the Appendix we show that Tt can be decomposed into five components

Tt = τ 1(πt − π)2 + τ 2(πt − π)EtXt+1 + τ 3∆̂t−1 + τ 4(y2
t − y2

t−1) + τ 5(ytut − yt−1ut−1), (16)

in which τ 1, τ 2, τ 3, τ 4, τ 5 are all positive parameters defined in the Appendix. In what
follows, we label each component as Tj,t for j = 1, ..., 5 with T1,t ≡ τ 1(πt − π)2, T2,t ≡
τ 2(πt − π)EtXt+1, T3,t ≡ τ 3∆̂t−1, T4,t ≡ τ 4(y2

t − y2
t−1) and T5,t ≡ τ 5(ytut − yt−1ut−1). The

first three components capture the contemporaneous, future and past second-order effects of
inflation on the targeting rule. The fourth and fifth components capture the second-order
effects of marginal costs and mark-up shocks. We now describe each component in turn.
The first term is always positive insofar as there are deviations of inflation from the target,
therefore implying an expansionary bias. As we have seen, the AS equation shows a weaker
trade-off between inflation and output gap when inflation deviates from the target, and this
can be exploited when setting the optimal response of inflation to shocks. The expansionary
bias built into the AS equation dominates the contractionary bias coming from preferences.
A positive Tt in (15) can accommodate a more expansionary response of inflation or output.
The second term reflects the correlation between the current deviation of inflation from the
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target and the expected present discounted value of those deviations, captured by Xt+1. If
these comovements are positive, an expansionary bias will emerge. This effect is implied, as
well, by the form of the AS equation. The third term captures instead the effects of past
inflation. Even in this case, past deviations of inflation from the target imply a weaker trade-
off between inflation and the output gap, which can be exploited to run a more expansionary
policy. The fourth term captures the effects of deviations of the square of output gap with
respect to the previous level. Any increase leads to a more expansionary bias. Finally, the
last term captures the effects of shocks in combination with the output gap and their previous
levels. Suppose that at time t the economy is hit by a cost-push shock. The output gap falls
on impact and the combined effect therefore leads to a contractionary bias which can be
accommodated through lower inflation or less reduction in the output gap.

4 Optimal asymmetric response to shocks

In this Section, we combine previous results to determine the optimal response to mark-up
shocks. Figure 1 shows the optimal response to a positive mark-up shock by comparing
the first-order approximation with a second-order approximation. In the numerical analysis,
the discount factor β is calibrated to 0.99. The other parameters are estimated using the
procedure we detail in the Appendix. Namely, the inverse of the Frisch elasticity is φ = 0.2,
the fraction of firms that do not reset their price in the Calvo model is α = 0.904, while the
elasticity of substitution among intermediate goods is set at σ = 4.8.
Figure 1 shows that a positive cost-push shock increases inflation and reduces the output

gap.6 Inflation remains positive because of the persistence of the shock, but eventually
falls below the target value and converges to it from below. Output shows a hump-shaped
response, converging very lately to the steady-state value. A second-order approximation
differs from the first order along some dimensions. Inflation, output gap and interest rates
are higher once accounting for nonlinearities.
The second and third charts in the second row display the deviations from the targeting

rule, the variable Tt of equation (15) and its decomposition into the five components of (16).
The variable Tt is always positive: an expansionary bias arises which is reflected by a relatively
higher inflation, as we have discussed. Two are the components of the decomposition that
matter more for the deviations of the targeting rule from the zero benchmark of the first-order
approximation. The second term, T2,t, capturing the future movements of inflation explains
the short-run positive value of Tt. The first term T1,t, driven by the current deviations of
inflation from the target, explains instead the persistence in the expansionary bias.
Figure 2 repeats the same experiment but for a negative mark-up shock. In comparison

with Figure 1, results are no longer symmetric except for the case of log-linear approximations
in which the response is exactly specular.
A second-order approximation is instead characterized by an expansionary bias, which

mostly results in a higher path of inflation that substantially overshoots the target. This
is reflected by a positive value of Tt in (15), which is of the same magnitude as that of

6The magnitude of the shock is 0.0022, which is 20 times the estimated standard deviation. This large
shock is needed to appreciate the differences in the impulse responses, as it is done in the literature. See,
among others, Basu and Bundick (2017).

9



0 10 20 30 40 50
10

9

8

7

6

5

4

3

2

1
FO approx
SO approx

0 10 20 30 40 50
1.5

2

2.5

3

3.5

4

4.5

5

0 10 20 30 40 50
0.5

0

0.5

1

1.5

2

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0 10 20 30 40 50
0

0.5

1

1.5

2 103

0 10 20 30 40 50
1

0

1

2

3

4

5

6

7 103

1

2

3

4

5

Figure 1: Impulse responses to a positive innovation to the mark-up process of output gap, inflation, nominal
interest rate, mark-up, T given by equation (15) and its components given by equation (16). Second-order
approximation (blue solid line) versus first-order approximation (black dashed line). Inflation and interest
rates are in % and at annual rates. Output gap is in %.

Figure 2. Note that Tt can be appropriately evaluated using a first-order approximation and,
in this approximation, responses are specular and of similar magnitude. Therefore, all the
components of Tt in (16) have the same sign and magnitude. We can then summarize the
results. Once accounting for second-order terms and following either positive or negative
mark-up shocks, optimal policy requires more accommodation in inflation without sacrificing
the output gap.

5 Asymmetries in inflation and output

As shown in the previous Section, a non-linear analysis uncovers the possible asymmetries
in the response of the economy to shocks, which, therefore, can generate asymmetries in the
distribution of inflation and output. In this Section, we further explore the implications of
these asymmetries by running a thought experiment on U.S. data to compare the implications
of the linear model versus the non-linear (second-order approximated) model.
Let us first consider the linear model and the related New-Keynesian AS equation. As-

sume that this equation is data consistent for appropriately calibrated/estimated parameters.
Under this assumption and by using the data path of inflation and output gap, it is possible
to use the AS equation to back up a path for the mark-up shock. Details of the procedure
are left to the Appendix.7 Given the filtered mark-up series, we can then ask which paths

7The series of the quarterly real GDP (labeled GDPC1_NBD19470101 in the FRED database) and the
quarterly real gross potential output (labeled GDPPOT_NBD19490101), together with the series of the
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Figure 2: Impulse responses to a negative innovation to the mark-up process of output gap, inflation, nominal
interest rate, mark-up, T given by equation (15) and its components given by equation (16). Second-order
approximation (blue solid line) versus first-order approximation (black dashed line). Inflation and interest
rates are in % and at annual rates. Output gap is in %.
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Figure 3: Plot of the filtered mark-up series and its innovation using the first-order approximation model
(FO approx) and the second-order approximation model (SO approx).

of inflation and output would have occurred were policies conducted optimally using the
quadratic-linear model. We repeat the same experiment using the cubic-quadratic model.
First, using the second-order approximation of the AS equation, we filter the path of mark-
up shock consistent with the data path of inflation and output gap. Then, we compute the
path of inflation and output gap under the optimal cubic-quadratic model. Note that the
two experiments are aligned to be equivalent in replicating the data on inflation and output
with the respective filtered mark-up series and the respective AS equation. Optimal policy
will instead be different.
Figure 3 shows the filtered paths of the mark-up shocks, modelled as AR(1) processes,

and their innovations implied by using the linear model (the line labelled “FO approx”) and
the non-linear model (the line labelled “SO approx”), respectively. The estimated persistence
of the process is 0.920 in the case of the linear AS equation and 0.943 in the other case, while
standard deviations of the innovations are 0.0185/100 and 0.0111/100, respectively.
Figure 4 compares the paths of inflation, output gap and its growth computed through

the two optimal policy problems with the paths seen in the data. In describing the Figure, we
first underline the differences between the data and the two optimal-policy experiments and
then we dissect the differences between the two optimal policies. First, note that inflation
is more volatile in the data than under optimal policies, in which cases it remains centered
around the 2% inflation target. Focusing on the two recessions marked by the grey areas,

quarterly core CPI inflation index (labeled CPILFESL) are downloaded from the FRED database for the
period 1995Q1-2019Q3. The series of the output gap is computed by taking the difference between the
logarithm of Real Gross Domestic Product and that of Real Potential Gross Domestic Product. The series
of inflation is instead obtained by taking the quarterly log-difference of the core CPI.
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Figure 4: Plot of inflation, output gap and output gap growth. Comparison among data (red-dashed line),
optimal policy using first-order approximation (FO) (blue line) and second-order approximation (SO) (black
line). Inflation is in % and at annual rate, output gap is in %.

it is interesting to note that optimal policy would have implied an inflation rate well above
the two-percent target in contrast with the below-target and subdued inflation rate seen in
the data. This more extended accommodation would have implied a prolonged expansion
in output without, however, preventing its fall, albeit delayed until 2010 and of a smaller
magnitude than what is seen in the data. After 2010, the recovery in the output gap under
optimal policies reflects that of the data.
Turning to the comparison between the two optimal policies, we observe some differences

in the optimal inflation rate mainly during the recession periods in which the optimal inflation
rate is higher under the first-order approximation than in the second-order approximated
model. This difference comes with important benefits for output growth under the second-
order approximated model. In particular, after the 2007-2008 financial crisis, the output gap
falls less if optimal policy follows the quadratic-cubic model.
The first panel of Figure 5 displays the difference between the two optimal targeting rules,

captured by the term Tt in (15). The decomposition of this difference is plotted over time in
the bottom panel of the Figure according to the split given by the five components identified
in (16). The first striking result is that Tt is always positive in the sample and spikes in
the aftermath of the recessions. Remember that a positive value of Tt allows inflation to
overshoot the target without requiring a proportional fall in the output gap. But, what are
the drivers of the spikes? The first component, T1,t = τ 1(πt− π)2, is the dominating one. As
we have seen, the AS equation shows a weaker trade-off between inflation and output gap
when inflation deviates from the target. Optimal policy requires inflation to overshoot the
target, which at the same time creates a weaker trade-off between inflation and output gap,
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Figure 6: Histograms of output gap (first column) and inflation (second column). Comparison among data
(first row), optimal policy under first-order approximation (FO) (second row), optimal policy under second-
order approximation (SO) (third row). Mean, median, standard deviation and skewness are reported in each
panel for the respective figure. Inflation is in % and at annual rates, output gap is in %.

allowing output gap to fall by less. In both spike episodes this channel is partly offset by the
fifth component, while in the aftermath of the second recession of the sample it is reinforced
by the third component. The last panel of the Figure compares the path of the output gap
under the optimal policy by using the second-order approximated model with that obtained
using the targeting rule σ(πt− π) + (yt− yt−1) = 0 in which the inflation rate coincides with
that under the same optimal policy. The figure allows us to capture in a better way the
expansionary bias implied by a positive Tt in the optimal targeting rule (15).
Finally, Figure 6 reports the histograms of inflation and output gap, comparing their data

values with those implied by the two optimal policies. Whereas inflation, in the data, is not
skewed and output is left skewed, under optimal policies inflation is right skewed and output
is not skewed. Inflation in the data has a mean of around 1.7% at annual rates while it is
centered at around 2% under optimal policies, and it is slightly higher under the optimal
policy computed by using the second-order approximation. In this case it is also marginally
more skewed and less volatile. Output gap is instead more dispersed under the two optimal
policies, and it is symmetric. It has a higher mean and median, and it is also less volatile
under the optimal policy when using the second-order approximated model.
This last Figure conveys an interesting message: had the policymakers been following an

optimal policy, we would have observed smaller deviations of inflation from the target with a
more skewed distribution of inflation displaying a larger number of observations above the 2%
target. The less volatile inflation would have come without any sacrifice in terms of average
output gap.
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6 AS Estimation

We now use our model to address a recent macroeconomic puzzle which has been extensively
discussed in literature and policy circles: the flattening of the Phillips curve. Inflation in
the U.S. economy has been running below target notwithstanding the fall in unemployment
and the growing economy, at least until the COVID-19 pandemic. Our model can provide
a possible explanation along the following lines. If the data generating process is the non-
linear model, an econometrician who instead estimates a linear AS equation could face an
omitted-variable problem, which can be responsible for an overly too low estimation of the
slope of the equation. Note, indeed, that in Section 3.2 we emphasized that accounting for
second-order terms implies a downward pressure on inflation given real marginal costs. The
educated guess therefore is that higher volatility could play a role in estimating a lower slope
of the Phillips curve.
To evaluate this conjecture we simulate the second-order approximation of the model

considered in the previous section. We use the same calibration of the parameters as in the
previous Section, the same estimated parameters of the bivariate VAR used to characterize
the dynamic of the output gap and the same “estimated” process of the mark-up shock
filtered by using the model to match the data. Then, we use the simulated data on inflation
and output gap to estimate the following linear Phillips curve relating inflation and output
gap using 5.000 samples of 250 quarters each

πt = a+ byt + εt. (17)

Benchmark Case 2σ Case 5σ Case 10σ

a -0.0005 -0.002 -0.014 -0.056
(-0.001, 0.000) (-0.004, -0.001) (-0.016, -0.009) (-0.072, -0.041)

yt 0.268 0.262 0.252 0.241
(0.23, 0.30) (0.22, 0.30) (0.20, 0.30) (0.16, 0.32)

R2 0.494 0.461 0.289 0.1409

Table 1: Estimates of equation (17). Cases 2σ, 5σ, 10σ consider respectively 2, 5, 10 times the standard
deviation of the benchmark case. Confidence intervals are reported below each estimate. The coeffi cients
and the standard deviations are the median values of the 5.000 estimations.

We repeat the same procedure by increasing the standard deviation of all the shocks by
the same magnitude, respectively two, five and ten times larger than in the benchmark case.
Table 1 reports the results. The median value of the coeffi cient of the output gap, b, is
positive and it decreases as the standard deviation of the shocks rises. Note that values of
b close to 0.2 are consistent with the estimates found in the data, as shown in Blanchard
(2016). The conjecture that an increase in volatility could have lowered the estimates of the
linear AS equation, in an otherwise non-linear world, seems validated by this analysis.
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We repeat the same experiment by estimating the New-Keynesian Phillips curve

πt = a′ + b′yt + βEtπt+1 + εt, (18)

in which the one-period ahead inflation expectations are computed by using a bivariate VAR
on the simulated inflation and output-gap data. Table 2 reports the results.

Benchmark Case 2σ Case 5σ Case 10σ

a′ -0.000 -0.000 -0.002 -0.009
(-0.0004, 0.002) (-0.001 0.000) (-0.005 0.000) (-0.016 -0.000)

yt 0.053 0.051 0.044 0.040
(0.030 0.076) (0.026 0.075) (0.012 0.076) (-0.008 0.089)

Etπt+1 0.897 0.905 0.933 0.943
(0.83 0.96) (0.840 0.970) (0.860 1.004) (0.861 1.019)

R2 0.887 0.872 0.803 0.747

Table 2: Estimates of equation (18). Cases 2σ, 5σ, 10σ consider respectively 2, 5, 10 times the standard
deviation of the benchmark case. Confidence intervals are reported below each estimate. The coeffi cients
and the standard deviations are the median values of the 5.000 estimations.

Also in this case, the coeffi cient of the output gap decreases as the standard deviation
of the shocks rises. The estimate of the coeffi cient in front of the one-period ahead inflation
expectations is not far from the calibrated one, 0.99, and it increases with the standard
deviations of the shocks. For a robustness check, we repeat the same estimation using one-
period ahead inflation expectations derived from the estimation of AR(1) and AR(2) processes
on the simulated inflation data. The results are quantitatively and qualitatively similar to
those of Table 2. Thus, we do not report them in the main text.
To further support our intuition for the flattening of the Phillips curve found by an econo-

metrician ignorant of the data-generating process, we consider a more educated estimation
based on the correct non-linear AS equation given by the system of equations (11)—(13)
adding to the regression also the square of inflation expectations, the square of output gap
and of past inflation rate:

πt = a′ + b′yt + βπet+1 + β′
(
πet+1

)2
+ φy2

t + γπ2
t−1 + εt. (19)

The results are presented in Table 3. Although parameters vary across the different values
of the standard deviation of the shocks, what is now striking is that the coeffi cient b′ is rather
stable when volatility varies. Indeed, the higher volatility is now captured by the quadratic
regressors. Note, however, that even regression (19) is misspecified, but it is exactly how it is
misspecified that matters for the different values of the coeffi cient of the output gap estimated
through model economies with different volatilities. Any interpretation of structural changes
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in the slope of the Phillips curve could be misled were the true data-generating process
known.

Benchmark Case 2σ Case 5σ Case 10σ

a′ -0.0003 -0.0001 -0.0004 -0.002
(-0.004 0.004) (-0.001 0.0008) (-0.003, 0.002) (-0.012 0.008)

yt 0.062 0.059 0.058 0.059
(0.034, 0.091) ( 0.03, 0.090) (0.019, 0.010) (-0.004 0.13)

Etπt+1 0.885 0.904 0.960 1.000
(0.80, 0.96) (0.80, 1.00) (0.81, 1.10) (0.820 1.18)

Etπ
2
t+1 25.13 40.29 20.33 3.47

(-264.41 309.99) (-91.68 159.60) (-16.04, 57.44) (-8.60 16.06)

y2
t -0.785 -0.771 -0.534 -0.42

(-2.02 0.44) (-1.41 -0.13) (-0.87, -0.22) (-0.69,-0.17)

π2
t−1 -20.09 -33.07 -15.1947 -2.270

(-266.93, 232.21) (-133.79, 79.79) (-44.36, 13.29) (-12.04, 7.05)

R2 0.893 0.88 0.823 0.769

Table 3: Estimates of equation (19). Cases 2σ, 5σ, 10σ consider respectively 2, 5, 10 times the standard
deviation of the benchmark case. Confidence intervals are reported below each estimate. The coeffi cients
and the standard deviations are the median values of the 5.000 estimations.

7 Conclusion

We have studied the nonlinearities embedded in the standard New Keynesian model. A
cubic approximation of the welfare shows that the policymaker should fear more expan-
sions in output and inflation rather than contractions. A second-order approximation of the
aggregate-supply equation implies that upward pressures coming from real marginal costs do
not necessarily push up inflation. In the optimal policy problem, an overall expansionary
bias emerges, implying a relatively higher inflation following both positive or negative mark-
up shocks with respect to what would have been implied by the standard linear-quadratic
analysis. We use our framework to run a counterfactual experiment on U.S. data to study
how optimal policy should have been conducted, comparing the case in which the monetary
policymaker was following the linear model to the one in which he followed the non-linear
model. Finally, we argue that one of the possible reasons for the flattening of the Phillips
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curve can be related to an omitted-variable problem for which the econometrician disregards
second-order terms from the estimation, whose variation can be responsible for the flattening
of the estimated linear relationship between output and inflation.
Our paper suggests that considering nonlinearities can be an important element for appro-

priately conducting monetary policy, in particular when volatility varies substantially over
time. The analysis should be extended to more general frameworks, which could further
enhance the importance of nonlinearities.
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A Appendix

In this Appendix we derive the approximations present in the text.

A.1 Derivation of equation (9)

We take a third-order approximation of expression for the index of price dispersion:

∆t ≡ α∆t−1

(
Πt

Π

)σ
+ (1− α)

(
1− α

(
Πt
Π

)σ−1

1− α

) σ
σ−1

.

First, note that

∆t − 1 = α(∆t−1 − 1) + α

[
σ

(
Πt − Π

Π

)
+

1

2
σ(σ − 1)
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Πt − Π
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)2

+
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6
σ(σ − 1)(σ − 2)
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+O(||ξ||4)

which can be written as

∆̂t = α∆̂t−1 + ασ∆̂t−1(πt − π) +
1

2
ασ(σ − 1)(πt − π)2 +

1

6
ασ
(
σ2 − 1

)
(πt − π)3

−1
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(1− α)
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having used

Πt = Π

[
1 + (πt − π) +

1

2
(πt − π)2 +

1

6
(πt − π)3

]
+O(||ξ||4).

We can simplify the above expression to

∆̂t = α∆̂t−1 + ασ∆̂t−1(πt − π) +
1

2

σα

1− α(πt − π)2 +
1

6

σα

1− αγ(πt − π)3

+O(||ξ||4)

where we have defined

γ ≡ (σ − 1)

(1− α)
+ σ − α

1− α.

Now note that

∆̂t = αt−t0+1∆̂t0−1 + ασ
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and therefore
∞∑
t=t0

βt−t0∆̂t =
α

(1− αβ)
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ασ
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2
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6
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Note, moreover, that up to second-order terms, it follows:

∆̂t = αt−t0+1∆̂t0−1 +
1

2

α

(1− α)
σ

t∑
s=t0

αt−s (πs − π)2 +O(||ξ||3).

A.2 Derivation of AS equation (11)

The AS relation can be written exactly as

log

(
1− α

(
Πt
Π

)σ−1

1− α

)
= −(σ − 1)(logKt − logFt), (A.1)

where

Ft = 1 + αβEt

{
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(
Πt+1
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}
,

Kt = kt + αβEt

{
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(
Πt+1

Π

)σ}
.

A second-order Taylor series for the left-hand side of (A.1) takes the form

log
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α
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)
= − α

1− α(σ − 1)
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}
(A.2)

It remains to derive similar second-order approximations for logKt and logFt on the right-
hand side.
The definitions of Kt and Ft imply second-order expansions

F̂t +
1

2
F̂ 2
t +O(||ξ||3) = αβEt{F̂t+1 +

1

2
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2
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2
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First, note that, to a first-order approximation,

α

1− α(πt − π) = (K̂t − F̂t) +O(||ξ||2) (A.5)

F̂t = αβEt{F̂t+1 + (σ − 1)(πt+1 − π)}+O(||ξ||2)
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and therefore
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Take now the difference between (A.3) and (A.4) to obtain
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1

2
(K̂t+1 − F̂t+1)(K̂t+1 + F̂t+1) +

+(πt+1 − π) +
2σ − 1

2
(πt+1 − π)2 − (σ − 1)(πt+1 − π)F̂t+1

+σ(πt+1 − π)K̂t+1}+O(||ξ||3).

Using (A.1), (A.2) and (A.5), we can write

(πt − π) +
1

2

σ − 1

(1− α)
(πt − π)2 +

1

2
(πt − π)Zt =

1− α
α

(1− αβ)

(
k̂t +

1

2
k̂2
t

)
+ βEt{(πt+1 − π) +

α

2

σ − 1

(1− α)
(πt+1 − π)2 +

1

2
α(πt+1 − π)Zt+1

+(1− α)
2σ − 1

2
(πt+1 − π)2 +

−(1− α)(σ − 1)(πt+1 − π)F̂t+1

+(1− α)σ(πt+1 − π)K̂t+1}+O(||ξ||3),
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where we have defined Zt = F̂t + K̂t.
Now note that

1

2
(α− 1)(πt+1 − π)Zt+1 − (1− α)(σ − 1)(πt+1 − π)F̂t+1 +

+(1− α)σ(πt+1 − π)K̂t+1 =
1

2
(α− 1)(πt+1 − π)(F̂t+1 + K̂t+1)− (1− α)(σ − 1)(πt+1 − π)F̂t+1 +

+(1− α)σ(πt+1 − π)K̂t+1 = −(1− α)

2
(2σ − 1)(πt+1 − π)(F̂t+1 − K̂t+1)

=
α

2
(2σ − 1)(πt+1 − π)2 +O(||ξ||3).

Therefore, we can write

(πt − π) +
1

2

σ − 1

(1− α)
(πt − π)2 +

1

2
(πt − π)Zt =

1− α
α

(1− αβ)

(
k̂t +

1

2
k̂2
t

)
+ βEt{(πt − π)

+
α

2

σ − 1

(1− α)
(πt+1 − π)2 +

1

2
(πt+1 − π)Zt+1

+
2σ − 1

2
(πt+1 − π)2}+O(||ξ||3)

which can be further rewritten as

(πt − π) +
1

2

σ − 1

(1− α)
(πt − π)2 +

1

2
(πt − π)Zt =

1− α
α

(1− αβ)

(
k̂t +

1

2
k̂2
t

)
+ βEt{(πt − π)

+
1

2

σ − 1

(1− α)
(πt+1 − π)2 +

1

2
(πt+1 − π)Zt+1

+
σ

2
(πt+1 − π)2}+O(||ξ||3).

Therefore, defining

Vt ≡ (πt − π) +
1

2

(
σ +

σ − 1

(1− α)

)
(πt − π)2 +

1

2
(πt − π)Zt

we can write it as

Vt =
1− α
α

(1− αβ)

[
k̂t +

1

2
k̂2
t

]
+
σ

2
(πt − π)2 + βEtVt+1.

Consider now

F̂t = αβEt{F̂t+1 + (σ − 1)(πt+1 − π)}+O(||ξ||2)

K̂t = (1− αβ)k̂t + αβEt{K̂t+1 + σ(πt+1 − π)}+O(||ξ||2)

F̂t = (σ − 1)Et

∞∑
T=t+1

(αβ)T−t(πT − π) +O(||ξ||2)

and

K̂t =
α

1− αEt
∞∑
T=t

(αβ)T−t(πT − π) +

(
σ − 1

1− α

)
Et

∞∑
T=t+1

(αβ)T−tEt{πT − π}+O(||ξ||2).
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Zt = K̂t + F̂t

=
α

1− αEt
∞∑
T=t

(αβ)T−t(πT − π) +

(
− 1

1− α + 2σ − 1

)
Et

∞∑
T=t+1

(αβ)T−tEt{πT − π}.

= −
(
− 1

1− α + 2σ − 1

)
(πt − π) + 2(σ − 1)Et

∞∑
T=t

(αβ)T−t(πT − π) +O(||ξ||2).

Therefore, we can write

Vt ≡ (πt − π) +
1

2

(
1 + σ

α

1− α

)
(πt − π)2 + (σ − 1)(πt − π)Xt

having defined
Xt = (πt − π) + αβEtXt+1.

Now note that
k̂t = (1 + φ)nt −∆t + µ̂t

and that
∆̂t = α∆̂t−1 +

1

2

α

(1− α)
σ(πt − π)2 +O(||ξ||3).

Therefore, we can write

Vt =
1− α
α

(1− αβ)

[
(1 + φ)nt −∆t + µ̂t +

1

2
((1 + φ)nt + µ̂t)

2

]
+
σ

2
(πt − π)2 + βEtVt+1

= κnt + ut +
(1 + φ)κ

2

(
nt +

ut
κ

)2

+ (1− α)(β∆̂t − ∆̂t−1) + βEtVt+1,

where we have defined:

κ =
1− α
α

(1− αβ)(1 + φ)

ut =
κ

(1 + φ)
µ̂t.

A.3 Derivation of the optimal targeting rule (15)

Optimal policy follows from the minimization of the following loss function

Lto = Et0

∞∑
t=t0

βt−t0
{

1

2
n2
t +

1

6
(1 + φ)n3

t +
1

2

σ

κ
(πt − π)2 +

σ

κ
(1{−α)∆̂t−1(πt − π) +

1

6

σ

κ
γ(πt − π)3

}
(A.6)

under the constraints
∆̂t = α∆̂t−1 +

1

2

σα

1− α(πt − π)2; (A.7)

Vt + (1− α)∆t−1 = κnt + ut +
(1 + φ)κ

2

(
nt +

ut
κ

)2

+ βEt{Vt+1 + (1− α)∆t}; (A.8)
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Vt ≡ (πt − π) +
1

2

[
1 + σ

α

1− α

]
(πt − π)2 + (σ − 1)(πt − π)Xt; (A.9)

Xt = (πt − π) + αβEtXt+1. (A.10)

Using Lagrange multipliers ϕ1,t, ϕ2,t, ϕ3,t, ϕ4,t attached to the constraints (B.18)-(B.21), the
first-order conditions are

nt : nt +
1

2
(1 + φ)n2

t = κϕ2,t + (1 + φ)κ
(
nt +

ut
κ

)
ϕ2,t, (A.11)

(πt − π) :
σ

κ
(πt − π) +

1

2

σ

κ
γ(πt − π)2 +

σ

κ
(1− α)∆̂t−1

=
σα

1− α(πt − π)ϕ1,t + ϕ3,t +

[
1 + σ

α

1− α

]
ϕ3,t(πt − π)

+(σ − 1)ϕ3,tXt + ϕ4,t, (A.12)

∆̂t :
σ

κ
(1− α)βEt(πt+1 − π) + ϕ1,t + β(1− α)Et{ϕ2,t+1 − ϕ2,t},= αβEtϕ1,t+1, (A.13)

Vt : ϕ3,t = ϕ2,t−1 − ϕ2,t, (A.14)

Xt : ϕ4,t − αϕ4,t−1 = (σ − 1)(πt − π)ϕ3,t. (A.15)

Note that up to first-order terms, we can write

σ

κ
(πt − π) = ϕ3,t,

ϕ3,t = ϕ2,t−1 − ϕ2,t,

nt = κϕ2,t.

Moreover, note that (A.13) implies, again up to a first-order approximation, that

σ

κ
(1− α)βEt(πt+1 − π) + ϕ1,t + β(1− α)Et(ϕ2,t+1 − ϕ2,t) = αβEtϕ1,t+1

ϕ1,t = αβEtϕ1,t+1

and therefore
ϕ1,t = 0.

Note also that (A.15) can be written as

ϕ4,t − αϕ4,t−1 = (σ − 1)
σ

κ
(πt − π)2,

and comparing it with (B.18) we note that

ϕ4,t =
2(1− α)(σ − 1)

κα
∆̂t.
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We can insert these results into (A.11) to obtain

ϕ2,t =
1

κ
nt +

1

2

1

κ
(1 + φ)n2

t −
(1 + φ)

κ
nt

(
nt +

ut
κ

)
,

=
1

κ
nt −

1

2

1

κ
(1 + φ)n2

t −
(1 + φ)

κ2
ntut,

=
1

κ
nt −

1

2

(1 + φ)

κ

(
nt +

ut
κ

)2

+
1

2

(1 + φ)

κ

u2
t

κ2
. (A.16)

And into (A.12) to get

σ(πt − π) +
1

2
σγ(πt − π)2 + σ(1− α)∆̂t−1 =

[
1 + σ

α

1− α

]
σ(πt − π)2 − κ(ϕ2,t − ϕ2,t−1)

+σ(σ − 1)Xt(πt − π) +
2(1− α)(σ − 1)

α
∆̂t

which can be further arranged as

σ(πt − π) +
1

2
σγ(πt − π)2 + σ(1− α)∆̂t−1 =

[
1 + σ

α

1− α

]
σ(πt − π)2 − κ(ϕ2,t − ϕ2,t−1)

+σ(σ − 1)(πt − π)2 + σ(σ − 1)αβ(πt − π)EtXt+1

+σ(σ − 1)(πt − π)2 + 2(1− α)(σ − 1)∆̂t−1,

and finally as

σ(πt − π) +
1

2
σγ(πt − π)2 = αβσ(σ − 1)(πt − π)EtXt+1 +

α + 2σ − ασ − 1

1− α σ(πt − π)2

−κ(ϕ2,t − ϕ2,t−1) + (1− α)(σ − 2)∆̂t−1.

Note that

γ =
(σ − 1)

(1− α)
+ σ − α

1− α,

therefore we can simplify the above expression to

σ(πt − π) +
3α + 2σ − ασ − 1

α− 1

σ

2
(πt − π)2 + (1− α)(2− σ)∆̂t−1 = σαβ(σ − 1)(πt − π)EtXt+1 +

−κ(ϕ2,t − ϕ2,t−1).

We can insert in the above expression equation (A.16) to finally get

σ(πt − π) + (nt − nt−1)− 1

2
(1 + φ)

[(
nt +

ut
κ

)2

−
(
nt−1 +

ut−1

κ

)2
]

+
σ

2

(
1− σ − σ + 2α

1− α

)
(πt − π)2

= σαβ(σ − 1)(πt − π)EtXt+1 − (2− σ)(1− α)∆̂t−1 −
1

2

(1 + φ)

κ2
(u2

t − u2
t−1).
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We can also write it in terms of the output gap noting that

yt = nt − ∆̂t

and therefore

σ(πt − π) + (yt − yt−1) + ∆̂t − ∆̂t−1 −
1

2
(1 + φ)

[(
nt +

ut
κ

)2

−
(
nt−1 +

ut−1

κ

)2
]

+
σ

2

(
1− σ − σ + 2α

1− α

)
(πt − π)2

= σαβ(σ − 1)(πt − π)EtXt+1 − (2− σ)(1− α)∆̂t−1 −
1

2

(1 + φ)

κ2
(u2

t − u2
t−1).

Using (B.18), we can simplify it to

σ(πt − π) + (yt − yt−1)− (1− α) ∆̂t−1 +
1

2

σα

1− α(πt − π)2

−1

2
(1 + φ)

[(
yt +

ut
κ

)2

−
(
yt−1 +

ut−1

κ

)2
]

+
σ

2

(
1− σ − σ + 2α

1− α

)
(πt − π)2

= σαβ(σ − 1)(πt − π)EtXt+1 − (2− σ)(1− α)∆̂t−1 −
1

2

(1 + φ)

κ2
(u2

t − u2
t−1)

and finally we get

σ(πt − π) + (yt − yt−1) =
1

2
(1 + φ)

[(
yt +

ut
κ

)2

−
(
yt−1 +

ut−1

κ

)2
]

+

+
σ

2

(
σ + α

1− α + σ − 1

)
(πt − π)2 + αβσ(σ − 1)(πt − π)EtXt+1 + (σ − 1)(1− α)∆̂t−1 −

−1

2

(1 + φ)

κ2
(u2

t − u2
t−1).

We can further express it as:

σ(πt − π) + (yt − yt−1) =
(1 + φ)

2
(y2
t − y2

t−1) +
σ

2

(
σ + α

1− α + σ − 1

)
(πt − π)2

+αβσ(σ − 1)(πt − π)EtXt+1 +

+(σ − 1)(1− α)∆̂t−1 +
(1 + φ)

κ
(ytut − yt−1ut−1).

σ(πt − π) + (yt − yt−1) = Tt,
which can be rewritten as

Tt = τ 1(πt − π)2 + τ 2(πt − π)EtXt+1 + τ 3∆̂t−1 + τ 4(y2
t − y2

t−1) + τ 5(ytut − yt−1ut−1),
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with

τ 1 =
σ

2

(
σ + α

1− α + σ − 1

)
,

τ 2 = αβσ(σ − 1),

τ 3 = (σ − 1)(1− α),

τ 4 =
(1 + φ)

2
,

τ 5 =
(1 + φ)

κ
.

B Note on filtering mark-up shocks

The aim is to back up and estimate the mark-up shock from our baseline non-linear AS, as
well as from the standard linear AS and to compare the implications of the linear model to
those of the non-linear (second-order approximated) model.
First, consider the VAR model for the vector of variables zt = [yt, πt], output gap and

inflation,
zt = Azt−1 + εt, (B.17)

with Ω being the variance-covariance matrix of the shock εt. The output gap is therefore
given by

yt = e′2zt,

where e2 = [1; 0] is a vector that selects the second component of zt.
Consider now our AS model

∆̂t = α∆̂t−1 +
1

2

σα

1− α(πt − π)2; (B.18)

Vt + (1− α)∆t−1 = κnt + ut +
(1 + φ)κ

2

(
nt +

ut
κ

)2

+ βEt{Vt+1 + (1− α)∆t}; (B.19)

Vt ≡ (πt − π) +
1

2

[
1 + σ

α

1− α

]
(πt − π)2 + (σ − 1)(πt − π)Xt; (B.20)

Xt = (πt − π) + αβEtXt+1. (B.21)

Note that, given
yt = nt − ∆̂t

we can write

Vt + (1− α)∆̂t−1 = κyt + [κ+ β(1− α)]∆̂t + ut +
(1 + φ)κ

2

(
yt +

ut
κ

)2

+ βEt{Vt+1}. (B.22)

Assume that the mark-up shock follows an AR(1) process, as

ut = ρut−1 + ξt (B.23)
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where σ2
ξ is the variance of ξt.

Given the process for output gap reported above, guess the following state-space repre-
sentation

Vt = v + v′y zt
3x1

+ z′tvyyzt + v∆∆̂t−1 + vuut + vuuu
2
t + z′tvyuut

πt − π = π̄ + π′yzt + z′tπyyzt + π∆∆̂t−1 + πuut + π uuu
2
t + z′tπ yuut

∆̂t = ∆∆∆̂t−1 + z′t∆yyzt + ∆ uuu
2
t + z′t∆ yuut

Xt = x′yzt + xuut.

The next step will be to determine all coeffi cients and matrices using the method of
undetermined coeffi cients.
Note first that (B.18) implies

∆∆∆̂t−1 + z′t∆yyzt + ∆ uuu
2
t + z′t∆ yuut = α∆̂t−1 +

1

2

σα

1− α(z′tπyπ
′
yzt + π2

uu
2
t + 2πuz

′
tπyut)

and therefore

∆∆ = α

∆yy =
1

2

σα

1− απyπ
′
y

∆ uu =
1

2

σα

1− απ
2
u

∆ yu =
σα

1− απuπy

Note that ∆yy is a 3 by 3 matrix, while ∆ yu is a 3 by 1 vector.
Use (B.22) to obtain

v + v′yzt + z′tvyyzt + v∆∆̂t−1 + vuut +

vuuu
2
t + z′tvyuut + (1− α)∆t−1

= κe′2zt + [κ+ β(1− α)](∆∆∆̂t−1 + z′t∆yyzt + ∆ uuu
2
t +

+z′t∆ yuut) + ut +
(1 + φ)κ

2

(
z′te2e

′
2zt +

u2
t

κ2
+ 2

ut
κ
z′te2

)
+βEt{v + v′yzt+1 + z

′

t+1vyyzt+1 + v∆∆t + vuut+1 + vuuu
2
t+1 + z′t+1vyuut+1};

and therefore

v + v′yzt + z′tvyyzt + v∆∆̂t−1 + vuut +

vuuu
2
t + z′tvyuut + (1− α)∆t−1

= κe′2zt + [κ+ β(1− α) + βv∆](∆∆∆̂t−1 + z′t∆yyzt + ∆ uuu
2
t +

+z′t∆ yuut) + ut +
(1 + φ)κ

2

(
z′te2e

′
2zt +

u2
t

κ2
+ 2

ut
κ
z′te2

)
+

+βEt{v + v′yAzt + z′tA
′vyyAzt + εt+1vyyεt+1) + vuρut +

vuu(ρ
2u2

t + σ2
ξ) + z′tA

′v yuρut}.
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We have the following restrictions:

v =
β

1− β (tr[vyyΩ] + vuuσ
2
ξ)

v′y = κe′2 + βv′yA

vyy = [κ+ β(1− α) + βv∆]∆yy +
(1 + φ)κ

2
e2e
′
2 + β(A′vyyA)

v∆ + (1− α) = [κ+ β(1− α) + βv∆]α

vu = 1 + βvuρ

vuu = [κ+ β(1− α) + βv∆]∆ uu +
(1 + φ)

2κ
+ βv uuρ

2

v yu = [κ+ β(1− α) + βv∆]∆ yu + (1 + φ)e2 + βA′v yuρ.

Moreover,
Xt = (πt − π) + αβEtXt+1

implies that
x′yzt + xuut = π′yzt + πuut + αβ(x′yAzt + xuρut)

and therefore we have the following restrictions:

x′y = π′y + αβx′yA

xu = πu + αβxuρ.

Finally,

v + v′yzt + z′tvyyzt + v∆∆̂t−1 +

vuut + vuuu
2
t + z′tvyuut = π̄ + π′yzt + z′tπyyzt + π∆∆t−1 + πuut + π uuu

2
t + z′tπ yuut

+
1

2

[
1 + σ

α

1− α

]
(z′tπyπ

′
yzt + 2z′tπyπuut + π2

uu
2
t ) +

+(σ − 1)(π′yzt + πuut)
′(x′yzt + xuut).

Therefore,
π̄ = v

π′y = v′y

π∆ = v∆

πu = vu

πyy = vyy −
1

2

[
1 + σ

α

1− α

]
πyπ

′
y − (σ − 1)πyx

′
y

π uu = vuu −
1

2

[
1 + σ

α

1− α

]
π2
u − (σ − 1)πuxu
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π yu = v yu −
[
1 + σ

α

1− α

]
πyπu − (σ − 1)(πyxu + πuxy).

To sum up, the list of the parameters and matrices is given by:
1 : ∆∆ = α
2 : vy = [I − βA′]−1 ke2

3 : vu = 1
1−βρ

4 : v∆ = [κ+β(1−α)]α−(1−α)
1−βα

5 : π′y = v′y
6 : π∆ = v∆

7 : πu = vu
8 : ∆yy = 1

2
σα

1−απyπ
′
y

9 : ∆ uu = 1
2
σα

1−απ
2
u

10 : ∆ yu = σα
1−απuπy

11 : vyy = [κ+ β(1− α) + βv∆]∆yy + (1+φ)κ
2

e2e
′
2 + β(A′vyyA)

12 : vuu =
[κ+β(1−α)+βv∆]∆ uu+

(1+φ)
2κ

1−βρ2

13 : v yu = [I − βA′ρ]−1 ([κ+ β(1− α) + βv∆]∆ yu + (1 + φ)e2)
14 : x′y = π′y + αβx′yA =⇒ xy = πy + αβA′xy =⇒ xy = [I − αβA′]−1 πy
15 : xu = πu + αβxuρ =⇒ xu = πu

1−αβρ
16 : πyy = vyy − 1

2

[
1 + σ α

1−α
]
πyπ

′
y − (σ − 1)πyx

′
y

17 : π uu = vuu − 1
2

[
1 + σ α

1−α
]
π2
u − (σ − 1)πuxu

18 : π yu = v yu −
[
1 + σ α

1−α
]
πyπu − (σ − 1)(πyxu + πuxy)

19 : v = β
1−β (tr[vyyΩ] + vuuσ

2
ξ)

20 : π̄ = v
Note that all the parameters and matrices are convolutions of the structural parameters of

the model, that is, of α, φ, σ,β and of the parameters of the markup process, σ2
ξ and ρ, which

are respectively the variance of the innovations of the mark-up shock and its autoregressive
component.
Now, assigning a value to all parameters and using the data path of inflation and output

gap, it is possible to use the AS equation to back up a path for the mark-up shock as de-
scribed below. In particular, the parameter β is calibrated equal to 0.99, while the remaining
parameters will be estimated with the following procedure.

1. Estimate (B.17) to obtainA,Ω, using data from 1995q1:2019q3 downloaded from FRED
database.8

2. Guess ρ and σ2
ξ and a value for a, φ, σ.

9

3. Compute all the coeffi cients of the non-linear solution derived above.

8The output gap is contructuted as the difference between the log of the quarterly series of Real Gross
Domestic Product (GDPC1) and the log of the quarterly series of the Potential Output (GDPPOT). The
inflation rate is instead constructed as the log difference between the PCE price index excluding food and
energy (PCEPILFE). In the VAR analysis we consider demeaned data.

9The algorithm uses the function csmiwel to minimize the distance between theoretical and data moments.
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4. First, as an initial guess of the mark-up process in the non-linear AS, use the values of
ut filtered from the linear AS, that is, use

πt − π = π′yzt + πuut (B.24)

with π′y = [I − βA′]−1 ke2 and πu = 1
1−βρ and where π is set to zero since we use

demeaned data. Estimate ρ and σ2
ξ .

5. Given the new values of ρ and σ2
ξ compute data statistics on mean of inflation, Eπt, vari-

ance of inflation, var(πt), and covariance between inflation and output, cov(πt, yt), and
find parameters (σ, φ, α) to minimize the distance between data and model statistics.
Model statistics are computed using the non-linear AS as

Eπt = π + π̄ + tr[πyyEztz
′

t] + π∆E∆ + π uu

σ2
ξ

1− ρ2

with

E∆̂ =
tr [∆yyEz

′
tzt] + ∆ uu

σ2
ξ

1−ρ2

1−∆∆

and

var(πt) = tr[E(ztz
′
t)πyπ

′
y] + π2

u

σ2
ξ

1− ρ2

cov(πt, yt) = tr[E(ztz
′
t)e2π

′
y]

with
E (zz′) = (I − A)−1 Ω

(
(I − A)−1)′ .

6. Given (ρ,σ2
ξ , σ, φ, α) estimated above, now use:

πt − π = π̄ + π′yzt + z′tπyyzt + π∆∆̂t−1 + πuut + π uuu
2
t + z′tπ yuut

and
∆̂t = ∆∆∆̂t−1 + z′t∆yyzt + ∆ uuu

2
t + z′t∆ yuut

with non-demeaned data on πt and yt and with a value for target inflation π = 0.005
to back up {ut} and assuming ∆t0−1 = 0.

7. Estimate
ut = ρut−1 + ξt (B.25)

to obtain new values for ρ and σ2
ξ .

8. Repeat 2-7 until convergence on ρ and σ2
ξ is obtained and until the parameters σ, φ, α,

are those that minimize the distance between theoretical and empirical moments.10

10The algorithm used to minimize the distance between theoretical moments and empirical moments is the
matlab function csminwell.
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9. Finally, with the estimated parameters σ, φ, α, use again the first order solution (B.24)
to back the mark-up filter and estimate again the AR(1) process as in (B.25) to obtain
the convergence of the estimates of the parameters ρ and σ2

ξ .

Results: The structural parameters estimated using steps 1-8 of the procedure are:
σ = 4.8, φ = 0.2 and α = 0.904. The estimated ρ and σ2

ξ for the non-linear AS are 0.9430
and 0.0111/100, respectively. The parameters ρ and σ2

ξ are instead estimated equal to 0.920
and 0185/100 when using the linear AS equation as in step 9.

35


