Technical appendix to
“Designing Targeting Rules for International Monetary
Policy Cooperation”
by Gianluca Benigno and Pierpaolo Benigno

Derivation of the quadratic loss functions, equations (3.21), (3.32),
(3.33) in the main text.

In this appendix, we show how to derive a second-order approximation to the sum
of the utilities of the consumers belonging to each country (the objective function of
the policymaker) which results in a quadratic form and can be correctly evaluated
by a log-linear approximation to the structural equilibrium conditions. The method
used here follows Benigno and Woodford (2003). In particular we are going to derive
equations (3.21), (3.32), (3.33) in the main text.

First we recall that each individual has an utility function of the form

U} =E, {Zﬁ” [0(Ch) = V(yr (4, €7)] } :
T—t
where the index ;7 denotes a variable that is specific to household 7 and the index i
denotes a variable specific to the country H or F' in which j resides. We assume the
following functional forms

= V)€ = @)

The objective function of the monetary policymaker of country H is to maximize the
sum of the utilities of its consumers given by

W =Eg {iﬁt [U(Ct) —n! /0" V(yt(h)ft)dh} } ; (2)

since Cg = (C, for all j belonging to each country because of the complete-market
assumption.
The objective of the policymaker of country F' is

u(cy)

W = Eq {gﬂt {U(CE) —(1-n)"" /nl V(yt(f),éi)dh} } : (3)

All the variables have the same definitions as in the main text. We further define the
inefficient wedges, u, and yf, as a combinations of the mark-ups and the distorting
taxes in the following way

1 (1—7¢)(c—1) 1 (1—72“)(0—1).
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We approximate the model around a steady state in which the three pairs of exogenous
variables (at, a;), (G, G7), (1, ) all take constant values equal across countries
and such that @, G > 0 and i > 1 at all times. We further focus on a steady-state
in which Iy, = Puy/Puy1 = 1 and I}, = Py, /Pp, ; = 1 at all times. The

risk-sharing condition implies that
Uc(Cr) = Uc(CY)

and in the steady state C' = C*. Given that Il; = 1 and I, = 1 in the steady
state, the countries’ real marginal costs are constant and such that

Uc(C)

b= V, (07C + G.¢) (4)
for country H and -
Ua(C U
Cﬁg P (7:C + G.€) (5)

for country F', where py = Py /P and pp = Pr/P. We note that given the definition
of the general price index we can write

1L=npyr?+ (1 —n)pr?’. (6)

Given the functional forms assumed, equations (4), (5) and (6) imply that py = pr =
1 and that Yy = Y. As well T = 1, where T' = pr/py. We further note that unless
i = 1, the steady-state output and consumption are inefficiently low. For later use,
we define s, = C/Yy = C* /Y.

First we consider the welfare of the consumers in the home economy and take a
second-order approximation to its elements. A second-order approximation to U(C})
around the above defined steady state yields to

U(C) = UeClCy+ (1~ p)CF) + tip+O(€]F) (7)

where t.i.p. denotes terms that are independent of policy and O(]|¢||?) denotes terms
that are of third order or higher in the norm of the shocks. Here and in what
follows hats variables denote log-deviation of the variable from the steady state, e.g.
C,=1InC,/C. A second order expansion to the term V(i (h),£,) yields to

V(). &) = VY [5u(h) + %(1 +m)g; (h) — naege(h)] + tip+O([IE]F).  (8)

From (8), we can obtain that

"Vy(h),&)dh 1 N o 1, _ . )
o VB0 52 1) V=iV o i+ p+O( €],
o)




where following Woodford (2003, ch. 6) we have defined

Engi(h) = n_l/ gt (h)dh,
0
and used the following relations

En[9:(h)]* = varygie(h) + [Enge(h)), (10)

Tiag = Buih) + 5 (T ) varsi() + O(1€]), (1)

Equation (11) is derived from a second-order expansion of the output aggregator:

e () [rorma]™

Using the steady-state relations, we can combine (8) and (9) to get the utility flow
at time ¢

I | . .
wy = UCC’[C’t—i——(l—p)C’f—sc_lﬂ_lYHJ—l—

1 o
5% 1+ U)YHt + s, A Yy +

1 ., . . .
BORC ' o™t 4+ ) - varyg(R)] + tip.+O([[€]1%), (12)

where

w, = U(Cy) — fon V(yt;h),gt)dh.

We can then plug (12) into (2) and obtain that a second-order approximation to the
welfare criterion for the home country can be written as

_ s | . .
W= UCC’EO{Z BHC, + 51— p)C? — s i W, +

1 . I
) Se i (]‘—I—TI)YI%J—}_SC ' 177atYH,t+

171 71

—55 Aok ' + tLpAO([E]1), (13)

where following Woodford (2003, ch. 6) we have used the fact that

- t ~ 1 t
;ﬁvarhytw) Wit on)” ;ﬂﬂmﬂlp +O(IElP),



for
(1—a)(1—apf) 1
a (1+on)

We can write (13) in a vector-matrix notation as

k=

_ > 1 1
W=UcCEo{Zﬁt{z;mt—§winwt T, Ze§y — ZwﬂHt]thlp +O(IEN1%), (14)
t=0
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where
(l-—ao)(l—-a"5) 1
a* (1+on)
We can repeat the same steps and obtain a second-order approximation to the welfare
of country F' as

k:*

W= ffc@Eo{Zﬁt[éH (1= p)(Cr)? — st Vi +

1
—58e B LY s B e Yy +

1
—5s it (K1) md] + tip. + O(IE]P) (15)
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which can be re-written in a compact form as
* TaWal > AP 1 ! r7% ! r7% 1 * %2 : 3
W* = UcCEA{Y B2 w — ST Za — 0 26, — 52y mi] + tip + O(|IEl), (16)
t=0

where
Z'=000 —pts;t 10 0],

c

0 00 0 0 0 0
0 00 0 0 00
0 00 0 0 00
Zr=10 0 0 p's;'(1+n) 0 00|,

00 0 0 —(1=p) 0 0
0 00 0 0 0 0
(000 0 0 00

[0 0 0 0 0 0]

0 00 0 00

0 00 0 00
ZE=100 0 —p's;'p 00|,

0 00 0 0 0

0 00 0 0 0

(000 0 00|

* . —1-—1 x\—1
Zp, =, 1 o (K) .

We now derive a second-order approximation to the structural equilibrium conditions.
Let us focus on country H. As shown in the text (equation 1.5), the first-order
condition for sellers that can reset their price at time t, is

B, {imﬁ)m%(@) (@(h))‘“ Yir {ﬁt(h) Pur MTV;,@M,&T)]} o

o Py Pyr Pr Uc(Cr)
(17)
where ) .
i) = (B0) Y
H,T
and
Py 7 =aPy 7+ (1—a)p, 7 (h), (18)

is the law of motion of the producer price index. Following Benigno and Woodford
(2003), we take a second-order approximation to equation (17) combined with a



second-order approximation to equation (18). We integrate the resulting equation
forward starting from period 0 and obtain

Vo = EO{Z ﬁt[nYH,t + Pét — Put + iy, — nay] +

t=0
E[nYH,t + pCy — Py + ity — nay] - [—pCr + (2 + )Yy
o(l+mn)

o T} +s.0.bip.+O(][€]]%), (19)

Pt + iy — Nay] +
where V; is defined by
Vi = k! [7TH¢ + UWW%U + UzWH,tZt]

with

1l—0 1—ap
v, = )
1—a’ 2

ve=0(1+n)—

and

N

Zy = [_P(Ct - dt) + (2 + U)YH,t + ﬁH,t + [y — Udt] + R By 41 + afBEZ 4,

where

Uk =7 fiﬁ(l — 20 —no).

We can write equation (19) in a vector-matrix notation as

= 1 1
W = EO{Z B'laga: + aéﬁt + 5332Am$t + 2 A, + §aﬂ'hﬂ-%[,t]
t=0
+s.0.t.1.p.4+O(][€]]*), (20)
where s.0.t.i.p. denotes second-order terms independent of policy and

a.=[np —100 0 0],

a;=[-n 100 0 0],

24 p -1 000 0]

p 0> p 0000

1, -10000

A, = 0 0 000O0]/,
0 0 00O0O0

0 0O 00O0O0

0 0 0000
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ar, = o(1+n)k™t.

Repeating the same steps for the foreign country, we can obtain the second-order
approximation to country F’s AS equation as

Voo = EO{Z Bt + be&, + 53323:&% + @3 Beg, + §b7ff7r};2,t]
t=0
+s.0.61p.+O([[¢][), (21)

where
V,.=[000np —10]

b;=[000 —n 10,

0 0O 0 0 0 0

0 00 0 0 0 0

0 00 0 0 0 0
B,=1000 n2+n p -10/|,

000 p > p 0

000 -1 p =10

(000 0 0 0 0]

[0 0 0 0 0 0]

0 0O 0 0 0

0 0O 0 0 0
Be=|000 —n(l+n) (1+n 0|,

0 00 0 0 0

0 00 0 0 0

000 0 0 0]

where V;* is defined by

* __ px—17_% *2 * *
Vi=k [ﬂ-F,t T UnrTpy + vzWF,tZt ],



with
Zt = [=p(C; — &}) + (2 + ) Y5, + Pre + fif — 18]] + By iy + aBEZ .

We now take a second-order expansion of the demand equation for the goods produced
in the home country, which is the LHS equation of (2.8) in the main text

P\
Y = (%) nCy + (1 —n)Cf] + Gy,
t
obtaining
. . A re A Sen(1—mse) A g
Yu: = —0spus+nsCi+ (1 —n)s.C; + Gy + #(Ct) +
(1 —n)(1—(1=n)s.), ~ oo
sl =) 5 (L= 1)se) (g2 1 — )2y +
Se(1—5¢) o A s
"‘%‘92]7?{7,5 - Sc(l - Sc)gnctpH,t - Sc(l - 56)6(1 - n)CtpH,t -

—5:(nCy + (1 = n)CHGy + 50pp Gy + s.0.t.1.p.+O(||€]]%), (22)

where G = (G, — G)/Y . Equation (22) can be rewritten in a vector-matrix form as

S Bl + it + %xgpxxt 4 Def)] + sotip+O(E]F) =0,  (23)
=0
where
d,=[-1 ns. —0s. 0 (1—n)s. 0 0],
d.=[0001000 0]
[0 0 0 0 0 0 0]
0 ns.(l—mns,.) —0sc(1 — s.)n 0 —n(1 —n)s? 00
0 —0s.(1—sc)n se(1— s.)60° 0 —Osc(l=s)(1—m) 0 0
D,=1]0 0 0 0 0 0 0
0 —n(l—n)s? —0s.(l—5s)(1—n) 0 s.(l—n)(1—(1-n)s.) 0 0
0 0 0 0 0 0 0
0 0 0 0 0 00
[0 0 0 00 0]
00 —NS, 0 0O
00 0s. 000
De=1]0 0 0 00 0
00 —(1—n)s. 0 0 0
0 0 0 000
00 0 000




As well, we take a second-order expansion of the demand equation for the goods
produced in the foreign country, which is RHS equation of (2.11) in the main text

P —0
vz, - ( ) G+ (1 - n)Cy] + G

P,
obtaining
. . o s(l—ns,)  »
Vie = ~Bsiprg+ns.Cot (1 m)s Gy o+ G+ 219 g2y
(I =n)(1 = (1—=n)sc), A A A
+2 (1 = n)( 5 (1=n)s )(Ct)2—n(1—n)sthC’t—|—
Se(l — s, R A A A
—i—%ﬁpiﬂ’t — 5c(1 = 50)0nCiprr — sc(1 — 8.)0(1 —n)Cf pre —
—s(nCy + (1 = n)CY)G; + s0ppG; +s.081p4+O(|[€]), (24)
where G* = (G* — G)/Y. Equation (24) can be rewritten in a vector-matrix form as
e} 1 .
> B o+ i + SuiFamy + 2] +s.04ip+0([¢]") = 0, (25)
=0
where
fi=[0 ns. 0 —1 (1—-n)s. —0s. 0],
féz[OOOOOOOl],
[0 0 00 0 0 0]
0 ns(l—ns;) 0 0 —n(1 —n)s? —0s.(1—s.)n 0
0 0 00 0 0 0
F,=10 0 00 0 0 0
0 —n(l-n)s?2 0 0 s.(1—n)(1—(1-n)s.) —0s.(1—5s.)(1—n) 0
0 —Os;(l—s)n 0 0  —0Os.(1—s.)(1—n) se(1— s8.)60° 0
0 0 00 0 0 0
[0 0000 0 ]
00000 —nsS,
000O0O0 0
Fe=|00000 0
00000 —(1—n)s
000O0O 0s.
00 00O 0

We now derive the relation between relative prices and terms of trade exploiting the
definition of the price index (1.1) in the main text and the fact that 7' = Pr/Py

Pri "™ :
(?tt) =n+(1—n)T}".
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We obtain that

. ~ o1 :
by = —(1=n)T, = 5n(1 = n)(1 = )T + O(|[¢]1"), (26)
- 1
> B+ i) + O(J[¢]]") = 0, (27)
t=0
where
R.=00 —1 000 —(1-n),
[0 00000 0 1
00 0O0O0O 0
00 0O0O0O 0
H,=]100 0000 0
00 0O0O0O 0
00 0O0O0O 0
| 000000 —nl-n)(1-0)]
Again starting from (1.1) in the main text, we can take a second-order approximation
to
JENCE B
() —wrra-n
obtaining
A ~ o1 ~
pre =nli — 5%(1 —n)(1=0)I7 + O([[¢]]°), (28)
S Bl + 5] + OIEIP) = (29)
=0
where

L'’=[00000 —1 n]

000000 0
000000 0
000000 0

L,=|000000 0
000000 0
000000 0
(000000 —nl-n)(1-0)

The final equation that we need to consider is the risk-sharing condition, equation
(1.3) in the main text
Uc(Ch) = Uc(CY)

10



which is exactly log-linear with isoelastic preferences
C, = Cr, (30)
and can be written as

iﬁt [mia,] = (31)
t=0

where
=0100 —10 0],

We now proceed to construct a quadratic approximation to the welfare criteria for the
home and foreign countries. To this purpose, we combine constraints (20), (21), (23),
(25), (27), (29), (31) to get rid of the linear terms in the expansions (14) and (16). In
particular we need to take a particular linear combination of those constraints. We
collect the vectors that multiply the endogenous variables in the linear components
of the above constraints in the following (7x7) matrix

[ =lag by dy fo he Lo my).

In order to get the right weights to eliminate the linear terms in the welfare approx-
imation of the Home country, equation (14), we solve the following system of linear
equations for the vector ¢

I'¢ = z,.

As well, we solve the system
I'¢" =2

to eliminate the linear terms in the second-order approximation to country’s F' wel-
fare, equation (16). We obtain

W = ——UCOEO{Zﬁ (2, Qay + 204Qel; + Gry Ty + Gr, T} +

t=0

+Ko + tip.+O([1€]]%), (32)

where

Qv = Zp + (A + By + (3D, + (4,

Qe = Z¢ + (1A + (B + (3D + (4 F,

dr, = 2wy, + glawm
QTrf = C2bﬂ’f7
and K is defined as
Ko = UcCl¢, Vo + V5.

11



For country F' we obtain that

we = __UCCEO{Z Bz, Que + 2xth£t + Q7rh7THt + qTrfﬂ-Ft]} +

t=0

+ K+ tip.+O([€]]P), (33)
where
Qr = Zy + GiAc + (3B2 + (3D + CF,
Qf = Z¢ + (1 Ae + (3Be + (3D¢ + (4 F,
Try, = C10my,
Gr; = Zn, + Qobry,
Ky =UcC[(TVo + GG ).

We further note that by using the set of structural equilibrium conditions (22), (24),
(26), (28) and (30) up to first-order terms we can write

7y = Nagi + Net, + O(]P), (34)
where 3 = [C; T;] and
Se 80(1—mn) |
1 0
0 —(1—n)
N, = s, —s.0n ,
1 0
0 n
- 0 1 -
(00100 0]
000O0O0OO
00 0O0O0O
Ne=|000001
000O0O0OO
000O0O0O
|00 000 0]

By substituting (34) into (32) and (33), we obtain that

1
W = ——UCCEO{Zﬁ thmyt + 2%@5@ + qmﬂTHt + qTrfﬂ-Ft]}

t=0
+EKo + tip+O([[¢]]%), (35)

12



. 1
wr = __UCCEO{Zﬁ Y@ ;cyt +2th§£t +q7rh7THt +qwf7TFt]}

t=0

+K; + tip40([[€]), (36)

where .
Qu = NyQu Ny,
Q¢ = N;QuNe + Ny Qe
Q; = N;QiNa,
Qi = NLQ:N¢ + N.Q;.
Starting from equations (35) and (36) which are written using matrix notation, we

build a more transparent quadratic form in terms of target variables. To this end, we
note that the world welfare

WY =nW + (1 —n)W*,

which is defined as the weighted average of country H’s and F’s welfares with weigths
n and (1 — n), can be written as

1o -~ ~ ~
wW = —§UCCE0{Z B QY e + 201QL €, + ay, 7, + qﬂfWFt] +
=0
+KY + tip.+O(|[€]]?), (37)
where the elements of the matrices are the followings

~w (sen+p)?+p " (B=1)(se—p)(sen+p)—p " (5 —1)p(1 = s)

z,11 = )
Sen +p
“w
z,12 — 0
“w
z,21 07

W (g Pt nse0) + i (= 1) (se — p) (L) =" (@ — 1) (1= se)

Se+p
and 5
Qh =n (= 1) (p— se) — (sen + p)],
el Scn+p[ ( ) ( ) — ( )
. 0 (7 — 1) s.(1
O,y = " (7 —1) se( +?7)7
’ sen+p
AW 1 ——1 /- __1 /-
Qe = nm[u (m—1)(scn+p) — 5 (B —1)np +n(scn + p)l,

13
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@?/44 =n"'(1- n)@?’,n,
ng = nil(l - n)@?ﬁ&
ng,w = n_l(l - n)@gv,m,

nggl =(1- n)QQVE/H,
QZV,Q2 =(1- n)QQVVl27

o

3
0t = 1= 00+ n =i - 1)
Q?fm - _Q?[Ql’
Q?,/QS - _Q?/,ﬂ’
@?,/26 = _Q?/,%’
2= G ) )T
¢ = (@ (=D sc+sn+p—p " (n—1)p) <1‘”>m’

Ky =nKoy+ (1-n)K;.
We observe that we can write (37) in the form
WY = Lo B> ALY KY + tiprO(elf
= —5UcCE{Y ALY} + K + tip+O(JIEI1°),
=0

where

LY = NGy = CP P + X (T = T 4 Ay, + (L= m)AS, w3,

h ™
w — AW W AW
/\c = g,11» )‘q = Qm,227
w _ -1 W w o -1 W
>\7rh_n q7rh’ )\Wf_(]‘_n) q7rf7

where CYy,, is defined as

Oy = =) QY iy + Qi + Q13 Gwdl,

and T as

~ 0 NN AW~ AW - AW A

T =—(\,) I[Qg,glaR,t + Q¢ nofips + QeasGril,
where aw,; = na, + (1 —n)az,
other shocks)

14
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(40)

and ap: = a; — a;. (The same definitions apply to the



We further note that

Tw

A (1 = n)nf[z1 A2 + z),

where

(1 + Oscn) P (p=1) (1 = se)sen(pf = 1)

21 22

S+ p (sen + p)?

with the consequence that when pf = 1, then 2o = 0 and z; = 6.
We can now write (38) in another form, noting that

Y/Hi = 5.C" 4 (1 — n)0s. I} + G,

fth = 5,0" — nfs.T" + G,
and that

(Co = C)? = ns (Ve — Yir)* + (L= n)s. (Ve — V)P — n(1 —n)6*(T, - T}")*.

From the above conditions, it follows that

LY = nXy (Vi — Vi, )2 + (1— X2 (Y, — V)24
n(1 = n)N(T, — )% + nde wh, + (L= n)XY 75,

h

where now

Ay = 52AY,
0(1 —0p)
(sen +p)
In particular we have defined

w —
Ay =
W ~ A% ~ % A A Ak
Yi = crae + c2a; + cafiy + cyity + csGr + c6Gy,

Y, = diay + dady + dsft, + dafi; + ds Gy + dsG,
B _SCQEV’H A (nz1 4+ (1 —n)0) 4+ nz)

o nA; (z1: + 22) ;
s Q- n) N —6) + )
. WA (N + 22) ’
c3 = —SCQ?]’IQ (A (nz1 + (1 —n)0) + nz

nAL (21 NS + 22)

15
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5eQt (1 —n) [N (21 — 0) + 2]
nAL (21 AY + 22)
B CQ£ 132 (nzg + (1 —n)d) + scégﬁi})n@ +n(l —n)sAn 1t (n—1) (;—C;j%

“=" nAY (21 AY + 29)

Cyp = —

Y

+1,

=" nAL (1 AY + 22)

[5.QE A (1= n) (21 — 0) + 5.Q85(1 — n)zs — n(1 — n)s AR~ (B — 1) (Slcnfp)]

SCQEV,M A (21— 0) + 2o
A?:U(Zl)\éu + ZQ) !

SCQEV,M AY[(1 —n)zy +nl] + (1 —n)z]
nA (210, + 22)

5 Qs [N (21 — 6) + 2]
NP F 22)

SCQ?/,IQ A2[(1 —n)zy +nb] + (1 —n)z]

DR ,
d- = — cQg 137 (21 = 0) + ch§ 1372 — NS AL (1 — 1) (sl(,,;f;)
o )\g)(zl)\c + 22) )

dlE—

dQE—

I

dgE—

d4E—

dGE

CQgV13)\w(( —n)z; +nb) + chg’lg(l —n)zy + N2 AT (1 — 1) =22
B nAL (21 AY + 22)

We can further use (35) and (36) to get the relative welfare criterion
wh=w-w*

defined as the difference between the country H’s and F’s welfare criteria. We obtain

[o.9]

1. _ .
we— Ln.cn, {Z 5th} b KT+ tip 4O El),

t=0

where
Q Ye + 2%@5 €+ Q7rh7rHt + q7rf7TFt7 (42)

and the elements of the matrices are

~R
z,11 — 07

16



AR _ i'o
©12 (1 4 nhs,)
~5,21 = Qﬁ,l%
s (1=2n)p"'0
z2 (14 nbs.)
AR n 1
- T N 1— 9 c)y
Qe =~ ygayl (1 05)
5 __osf(+m)
Q§,12 =K (1 +779$C)>

3 _ pO+nlsc—n__,
8T T (1 s, |

@?,14 - _Q?,n,

ng = _lez»

Q?,w = _le?n
ng =(1- n)%??fn,

ng = (1 - n)9Q§12,
~ 14+nls.—n__
C . .=_(1-—n—=~" 1
Q5,23 ( n) (1+ 10s.) [

Q?,M =n(l - n)_IQSm,
@525 =n(l- n)flégzm
Qg a6 = (1 —n)" 1@5 233

R _ =101 7
Tm, = 1 ( 980)&/{(1—#779&)’

[(1 = 5¢) + (sen + p)(1 = Osc )],

[(1+n0s.)(1 —0s.) +0(1 — s.)],

R _ _;-1(1 _ o
s (1= ) sck*(1+nbs.)’

K =Ky — K.

We can further write

L =200 (Co = COYT, = T]") + NH(T = T2 + ARy + AE iy

where
R _ AR
Ay = z,12»
R _ AR
A, = x,229

17
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R _ R R _ R
)\ﬂ_h :qﬂ'h )\Wf = qﬂ'f’

and CF is defined by

CR = —(A\E) " [braws + bodtw + bsCivd, (44)
with ~
by = (1~ n)ingﬂa
by =(1— n)_légﬂ, by =(1— ”)_1(2?:23-
T is defined as . R
T = —(qu)_l[me,t + bsfip + beGRyl, (45)
b4 = b1071,
a1 — ph)
bs = b0, bzb@*%L,
s =0 o =00 )

and finally 5 .
T2 = —(1 = 2n)(A) ' [brany + bofig, + D3GRyl

As another way to write the relative welfare criterion we can define
Y/Iﬁt = 5.Cf + (1 —n)0s I + Gy,

?F,t = scé'tR — n@scftm + G’Z,

and observe that
20(CoCFYT-T7) = 5> (Vg =V s (Vi VE) — (1-20)0 (L~ T7)2. (46)
By using (46) into (43), we obtain

~ ~ ~ ~ ~R, A ~
L = A\ (Ve — VA2 = MLV, = YA + X, (5 — T2 + ME %+ M 7%, (47)

where
R R —2\R
Ay = Ay = 8¢ Aya/ 0,
N TR r 01 —2n)p (1 —0s.)(1—6p)
A= AP (1 — 2m)al = 578 ,

TP = () T — 6(1 — 20) AR T,
Now we note that

= =) hady + hafiy, + hs Gy + heGY,
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YE = (A keay + kaft] + ksGy + keGyl,
h1 = Sch
hs = s:ba,
0(1 —n)s.i”" (1~ Op)
(1 +nbs.)
0(1 —n)s.i— (1 —0p)
h6 = — )
(1+nbs.)

kz = Scbl,

Y

hs = —(Aj,) + scbs +

1{74 = Scbg,

where
<Ry [0(1 —=2n)p (1 —0p) A

TF = ()
t () (1+nbs,)
We are now ready to retrieve in a more transparent form the welfare of the single
countries. Indeed, we note that the welfare of country H can be written as

Rt| -

W=Ww"+ (1 -n)W"

By using (41) and (47), we obtain that
Lo A ot : 3
W = —§UCCE0{Zﬁ L} + Ko + tip4+O(|[€]]°), (48)
=0

where
Ly =Ny, (Yire = Y5 )P+ Ny, (Vi — Y22+ X(T — TP + Ay, + An,y i, (49)
Ay, = [n)\;” + (1 - n))\fh],
Ay = (L=n)(Ay = A7),
Ay = (X7, + (1= n)AL),

Aey = (L=n)AZ, + (1= n)AL),

f

Ay = (n(1—n)A + (1—n)X,),
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Vi = (Ay) (XYY, 4+ (1= )AL YR,
Vi = () (L= n) (YR, = AT YE),
Ti = () OUTE + (1 m)Ay T,
The welfare of country F' can be written as
W*=Ww"W —nWwh

and we obtain that

| :
W* — —§UCCE0{Z B'LIY + K7 + tip.4+0([€]]%), (50)

t=0

=X, (Ve = VI + X0, (Vi = Y2+ No(To = T + Xp iy + As i, (51)

* w R
)\yh = TL()\yh - )‘yh)’

A= [ —n)AY +nak),
* w R
Ay, = (nA,rh — n)\,,h),
* w R
AL = (L—n)A — AR,

A= (N —nd),
Vi, =) e Y, — nAE YV,
Vi, = (0,) (= n)X Vi, + Al Vi,
T = (\) T TP — 0k, TR).

We are assuming that policymakers are committed to additional commitments at
time O on the variables, F}, K;, Iy and K;. This assumption boils down to ask that
each policymaker takes as given V) and Vj as functions of predetermined and exoge-
nous variables and of the strategy of the other policymaker.! These functions will be
self consistent, reflecting the time consistency of the solution searched, meaning that
they will be the same functions that will be obtained under the equilibrium at later
times. By inspecting the definitions of Vj and V{ we note that indeed they depend
on transitional elements that are related to the specialty of time 0. The timeless per-
spective assumption implies that, in the above-derived welfare functions, the terms
Ky, K} can be considered as given when maximizing the welfare. It follows that an
equivalent way to represent the maximization of the welfare of each country is to

!They can also be considered as only functions of the exogenous and predetermined variables.
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minimize the discounted sum of the quadratic losses, L; and L; for policymakers H
and F' respectively.
The loss functions (41), (49) and (51) correspond to equations (3.21), (3.32), (3.33)

in the main text.

A linear-quadratic model (section 3 of the paper). Derivation of equa-
tions (3.22), (3.23) and (3.24).

The loss functions (49), (51) and (41) are indeed quadratic and can be correctly
evaluated by a log-linear approximation to the equilibrium conditions (20), (21), (23),
(25), (27), (29), (31). Up to first-order terms, these equilibrium conditions imply in
the same order

Tag = k(Y + pCy — Pre + i, — M — pgs) + BET 41 (52)
W*F,t = k*<77?};k,t + Pét* — Drt + iy —ma; — pgy) + ﬂEtﬂw,tH (53)
}A/Hyt = —0s.pus + ns.Ch + (1-— n)scCA’,;k + G, (54)

Y;{t = —0s.prs + ns.C, + (1-— n)scéf + G’f (55)

Py = —(1—n)T, (56)

pre =T, (57)

C,=Cr (58)

We can use equations (54)-(58) into (52) and (53) to obtain
T = k[(n+ ps; " )Way + (1= n)(1 = 0p)T, + fr, — e — pgws — ps; ' Gi] + BEmr 41,

W},t = k‘*[(n + PSJI)YF*,t - n(l - Qp)Tt + fiy — na; — pPIw, — psc_léﬂ + ﬁEtﬂ-}‘,t—&-h
T = 07", (Yay — Vi)

which can be further rewritten as

THt = KJ[(YH,t - Y;ft) + (1 — ”)@b(ﬁ: - Ttw) + ug) + BE T 141, (59)
W},t = K*[(Y;,t - Y/ﬁt) - mb(ﬁ: - Ttw) + uf] + ﬂEtﬂ-}‘,t—&—l? (60)
(T, = ") = 0 s [(Yia — Vi) — (Vi, = Y, (61)

where we have defined k' = k'(ps; ' +n) and ¢ = (1 — pb)/(ps. ' +n) and
Uy = (Psc_l + n)_l[ﬂt —na; — Psc_lét + (n + psc_l)?ﬁit + (1 - n)(l - Hp)ﬁw],

(st +n) iy —nay — ps, Gy + (n+ ps.)YE, — (1 — 0p)T}"].

<
%
Il
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Equations (59), (60), (61) corresponds to equations (3.13), (3.14) and (3.15) in the
main text. To these equations, we need to add the log-linear approximation to the
constraint given by the timeless perspective equilibrium (Vg and V;), which up to a
first-order terms requires an initial constraint on g = g and 75, = T, where
as in Woodford (2003, ch. 7), 7o and 7}, have to be interpreted as function of the
predetermined or exogenous variables that will be self-consistent in the equilibrium
considered. In particular we note that

uy = [§1Gw; + Eafiyyy + f3éW,t] + (1 = n)[v18re + Voltg, + ’Y3éR,t]> (62)
uf = [§awy + Eaflyy, + §3éW,t] —n[Y1Gr + Voflp, + 73GR,t]a (63)
where L
¢ = M (=1 p(1—s)
b A (sen+p)? 7
¢, = et (sen+p)? = (p—=1) p(1 = s.)
o Ae(8en + p)? ’
¢, = (=1 p(p+n)
T A (sen+p)?
_n(l=n)nfp ' (p—1)(1 —s.)
Y= W 9
Ay (5en+ p)
_n(1=n)0[a (1 +nbs.)(sen+p) — " (i —1) (1 = s.)]
72 - S\w 9 )
g (8cn+p)
Y = n(l-—n)p ' (p—1) (1 +0n)
’ Ay (e + p)?

Analysis of the gains from cooperation (section 3.2 and section 4 of the
paper)

This subsection presents the details of the results of section 4 of the paper. In a
non-cooperative equilibrium, each country minimizes its loss function by choosing its
path of GDP inflation as a function of the shock, taking as given the strategy of the
other policymaker. In particular, in a non-cooperative equilibrium where each country
commits from a timeless perspective, the policymaker in country H minimizes the
loss function (49) under the constraints (59)—(61) and the constraint that gy = Tg.
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The lagrangian of this problem can be written as

> 1 . - 1 . - 1. -~ . 1
L = Ey Zﬁt[§)‘yh (YH,t - YHh,t)2 + 5)‘yf (Y}:"k,t - Ylgt)z + §>‘q(Tt - Tth)2 + 5)\7Thﬂ-%{,t
t=0

1 . N - .
AT+ Prali e — (Vg — Vi) = =n)(T = T)) = B e ] +

+902,t[/€*71ﬂ-},t - (yF*t - ?I?t) + m/’(Tt - Tth) - 55*717},&1] +n(l - n)‘P:&,t[(Tt - Tth) +
_Hilsgl(YH,t - Y/}}}t) + 97180—1(}};#5 - }}Jélt)] - 901,715_17TH,0-

_|_

The first-order conditions are

Ay, (YHt - ?I}},t) — Y1~ ‘9_15;177/(1 - n)@a,t =0, (64)
)‘yf<Y;,t - Y/}{}t) — Pyt 971551”(1 - n)@:&,t =0, (65

>‘q(Tt - Tth) -(1- n)¢§01,t + mp(ﬁzt +n(l— n>903,t =0, (66
AmnTHE T “71<901,t - ‘Pl,t—l) =0. (67

We now define ¢, , = 901,t/" and @, ; = gom/(l —n), S‘yh =\, /1, S\yf = )\yf/(l —-n
and A\, = \;/(n(1 —n)). We can then combine (64), (65) to get

Ay, (Ve = Vige) + (1= m)Ay, (Vi = Yizg) = nry = (1= n)@y, = 0. (68)
We take also the difference of (64) and (65) and substitute in (66) for o3, obtaining

5‘yh (f/Ht - Y/Hht) - 5‘yf (le“k,t - Yij,t) - (1 + 9_1351¢) (Sbu - S~02,t) +‘9_15c_15‘a(ﬁ - Tth) =0.

(69)
We can substitute (69) into (68) obtaining
Pro = It L =n) L+ 0715 9) Ay, (Vare = Yip,) +
+(1 - n)j‘yﬂils;l?ﬁ(l + 9713;110)71(?};15 - Y/}?t)
H(1—n)0 s A1+ 07 s ) T, — T} (70)

We note that

(}A/l::t - Y/J?t) - }A/H,t - Sceﬁ» - (G'Hyt - éF,t) - Y/Jf?t
= (Yau—Yh,) — s (T = TP + (Vi — Vi, — 8T — (Ge — Gry))

We can then substitute into (70) obtaining
Pry = (Vee = YE) +092(Ty — T)) + 034, (71)
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where

d1=n+ (L—n)(L+0" s, 9) Ay, + (L—n)Ay, 0 s  p(1+ 0" s 1)~

Op = (1 —n)0 s Na(14+ 07" s, )™ — (1 — )\, 0 (1 + 0" s; )™

93 = (L=n)A, 07 s, (1 + 07" s ),
A = (YH¢ - YF,t - SCHTth - (G’Ht — épt))
Finally, we can combine (71) with (67) obtaining
ey e + D18V — Vi) + 9:20(T, — T}) + 9584, = 0. (72)

We can repeat the same steps for the foreign country obtaining a rule of the form

KA Ty + 0TA(YE, — Vi) + 05A(T - T) + 95847 =0, (73)

for certain parameters S\W , U1, U5, U3 and variable A;. We finally recall from the
analysis of section 4 in the text, that the two targeting rules that implement the
cooperative solution have the following form

KAY Ty + A AV, — Vi) — (1 —n)yA(T, — T,%) = 0, (74)
KXY oy + A A(YE, — Vi) + nyA(T, — T;) = 0. (75)

where v = s (i — 1)(1 — s.)(sen + 6~ ~. To study under which conditions
there are no gains from cooperation, we study when the targeting rules (72) and (73)
determine the same equilibrium as the targeting rules (74) and (75). In the first two
cases, indeed, the targeting rules (72) and (73) coincide with the targeting rules (74)
and (75), respectively.

Case I: 0 =1, s. = 1, with only productivity shocks a; and a;.

A first case in which the targeting rules coincide and then there are no gains from
cooperation is when the loss functions, L and L*, coincide. This is the case when
Ly=L; = L?, i.e when LE = 0 for each t. In particular LZ = 0 if and only if 5. = 1,
6 = 1 and there are only productivity shocks a; and a;. It is then the case that under
these conditions (72) and (73) coincide with (74) and (75).

Case II: 0p =1, s, = 1, with only productivity shocks, a; and a;.

The second case in which there are no gains from cooperation corresponds to the
case of independent economies. Under productivity shocks and symmetric demand
shocks, there are no gains from cooperation when s. = 1 and pf = 1.
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First we show that when pf = 1 it is possible to write the loss function for the
cooperative problem as

LY =nXy (Vg — Yi,)? + (L= n)A0 (Vi — Y7 + Ao 7w, + A8 ity
Moreover we note that LF can be written as
Lfi: )\i(YH’t _Yf?,t)2 _)\ZC(Y;t Yf‘{——it) +)\ﬂ'h Ht+)\7rf7TFt
We can then write L; and L} as

Lt = )\yh (}A/Hyt - Y/Hh,t)2 + )\yf (Y;t Yl?t) + )\Whﬂ-Ht + )‘Tl'fﬂ-Ft?

Ly = )‘Zh (Y/H,t - Y/I-ch,t)2 + )‘Zf (}A/I;,t - }N/l!,t)2 + A 7THt + )\ﬂ'fﬂ—Ft7

where now .
Y= y) (nAw YHt + (1 - )AR YH i),
~h
YF,t = ()\yf>_1( )()\w YFt )\R YFt)
et * w R
YH,t = ()‘yh) (n)\ YHt n)\ YH +);
~f
Yip = ()‘Zf)il[(l ))‘w YFt + n)\ YFt]

It is now there case that the targeting rules in the non-cooperative equilibrium
have the form

A ~h
KJ)‘Whﬂ-H,t + AyhA(YHJ - YH,t) =0,

N ~h
"f*)‘;krfw?,t + A;fA(Y;,t —Yp) =0,

while in the cooperative solution they have the form
KAY Ty + ACA Vi, — Vi) =0,

KNS Ty + AU AV, — Vi) = 0.
It is clear that under the assumption #p = 1 there are no gains from coordination

~h ~ ~h -
ifand only if Y, = Vi, Yo, = Vi, Ay, = A), Ay =AY, Ay = A0 AL, = AL, For

Th?

this to be the case it should be that s. = 1, with only product1v1ty shocks a; and a;.
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Case III: s. = 1, with only symmetric productivity and demand shocks a; = a;,
9t = 9
Under these assumptions the central planner loss function boils down to

LY = ny (Vi =Y ) 4+ (1=n) Ay (Vi =V Pn(1—n) Ay TP 4nA, 78 A (1-n) XY 77,

where

YV = awt,
Eo g

while the structural equilibrium conditions collapse to
THt = H[(YH,t —Y") + (1 —n)Ty + BETH 11,

W*F,t = “*[(YF*t - Y/tw) - mth] + ﬁEtW},tHa
= 0757 (Vi — Vi)

It is then the case that the targets mp; = 0 and 7}, = 0 implement the optimal
cooperative equilibrium. It can be also shown that the loss functions L; and L; can
be written as

Ly = Ny, (Vi = V) + Xy, (Vi — V)2 + ATP + Ary i + A, 77

Li= X, (YH,t - Y~:tw)2 + A;f(yﬁ,t - ?;,w)2 + AZTE +A; 7THt + )‘7rf7rFt7
from which it follows that the targets 7z = 0 and 7%, = 0 are also a Nash equilib-
rium. Thus there are no gains from cooperation in this case.

Analysis of the optimal cooperative allocation in the general case (sec-
tion 4 of the main text)

In a cooperative equilibrium, each country minimizes the social loss function by
choosing its path of GDP inflation as a function of the shocks. In particular, in
a cooperative equilibrium where each country commits from a timeless perspective,
the policymakers in country H and F' minimize the loss function (41) under the
constraints (59)-(61) and the constraint that 70 = T and 75 = Tr,

1 w
—n(l— n))\q qt2

L=E, Zﬁ n)\wat :

2( ))\wyFt +
1 w 1 w _*2 —1 —1

+ 2n>\ 7THt + 2(1 - "))\W,WF,t] + 1K Ty — Y — (1= n)Yg — BE T ]+

+ (1 - n)gou[m - 7},15 - y}‘,t +ng — PR 17T*Ft+1] +n(l —n)p, t[Qt+

- 0_131:_1?JH¢ + 9_15519};15] - n@l,fl’%_lﬂ-H,O - (1~ n)<p2’71/£ 1”?0
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with yg, = (YH,t—Y;ﬁt), Yy = (YF*,t_Yﬁt) and ¢, = (T;—T}") and where ©14, P2, and

@3, are the lagrangian multipliers associated with (59), (60) and (61) respectively.

®1,1, P2,—1 are the multipliers associated with the initial conditions 7o and 7.
The first-order condition with respect to ym, y7, and g; are

)\ZJ?JH,t =Pt (1- n)‘g_lsf;_l@:s,ta (76)
)\Zuy}k«“,t = Yo — ne_lsgl(Ps,t7 (77)
/\ZJC]t = ¢901,t - ¢¢2,t — P34t (78)
while the ones with respect to mp, and 73, are
’f)‘thH,t =Pt — Pri-1s (79)
’f*)‘;jrjfﬂjf,t = Yot — P2t 15 (80)

for each t > 0.
We first characterize the properties of the optimal cooperative outcome. By taking
a weighted average with weights n and (1 — n) of (76) and (77), we obtain

X;[”?JH,t + (1 - n)y},t] =N+ (1 - n)‘Pzt- (81)
We then take the difference of (76) and (77) and combine it with (78), obtaining
(N + 07220 (Yrre — Ye) = (L+ 07 s7190) (014 — 2y), (82)

where we have used the fact that ypm, — Ypy = 0s.q;. We further note that we can
write (82) as
AZU(yH7t - y},t) — V4G = (901,t - 902,1:) (83)
where we have used the relation Ay = Os;'¢[s2\) — B (i — 1)(1 — sc)sen(scn +
p)~'] and defined v as v = s 'n( — 1)(1 — s.)(sen + 60751
By using (81) and (83), we can obtain

/\ZJ?JH,t —(1—=n)yg: = Pt

Ay Ype + VG = Py
which combined with (79) and (80) yields the following relation

KAG T+ Ay Aymy — (1 —n)yAgq =0, (84)

KA Ty + Ay Ay, + nyAg = 0. (85)

Optimality of the flexible price allocation (section 3 and 4 of the main
text)
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By inspecting (41), (59), (60) and (61), we have that when u; = u; = 0 it is
optimal to set mp, = 75, = 0 V¢ > 0. This occurs under the following combinations
of shocks and parameters:

Symmetric Shocks: a) s. = 1 with symmetric productivity shocks a; = a;;

b) & = 1 with symmetric productivity and public expenditure shocks a; = a7,
ét - ér

In this case it is easy to check that from (62) and (63) £, = 0, & = 0 and
¢, = 0. In general symmetric mark-up shocks imply a departure from the flexible
price allocation.

Asymmetric Shocks: a) s, = 1 with asymmetric productivity shocks a; and
ay.

b) p =1 with asymmetric productivity and public expenditure shocks, i.e. a, aj,
and G, G}.

Again by inspection of (62) and (63), we obtain ; = 0 and 75 = 0 depending on
the cases.

Properties of the Nominal Exchange Rate under Cooperation (section
3 of the main text)

First we note that kA7, = &*A7 . We now use (82) with yu; — yp, = 0s.q; to get
that
(L+0"'s. ')
w -2 92w
Ay 072N )0s.
By combining the previous equation with (79) and (80) and with the law of motion
of the terms of trade we get that

1 (1+60s1) 3
- - 2 — ¢y,) + T}
St (K/)\Z.}h (A;LUU + 9—286_2)\2))986 (Spl,t (102,t) t

qr = ( (801,15 - %,t)-

When 1z = 1 we obtain that

1 1 52 0 A
= —_ — c _ N _ G ) .
St (O’ 950) (p + nsc) (Qpl,t 902,15) + —1 T (95077 (aR,t Rt

Note that in this case u; = i, and uf = f;. It is easy to see that when there
are only mark-up shocks then a fixed exchange rate regime would be optimal when
L — L "When there are no mark-up shocks it then follows htat

St 77 (&R,t - GA(Rﬂf) .

o 0sc’
B 14 0s.n
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On the other hand when s, =1 and @ > 1

1 1 1 w
5= (373) ramarE ATy e T

where Ttw is a combination of asymmetric productivity, mark-up and public expen-
diture shocks. Note that in this case u, = &yft, + €3G and vy = &,0; + 3G When
there are no mark-up or government expenditure shocks then the nominal exchange

rate follows
n

1+ 6n

St — aRt-

Determinacy of Optimal Cooperative Solution in the General Case
(L # 1) (Section 4 of the main text)

We show that the first-order conditions (76)—(80) combined with the constraints
(59)-(61) and the initial conditions ¢, _; and @, _; yield to a determinate equilibrium.
First we use (76)—(80) and (61) to write (59) and (60) in terms of only the lagrangian
multipliers and the shocks as it follows

1 9 1—n)Y 1
Eip141 = (1 + 3 + 1§K> 1,t %‘Pzt - B%,t—l + %ut (86)

1 U3&k" ) ndoéK* 1 ER*
E =(1+-=+ ——— 01— =Pa41 + Uy 87
t¥2,1+1 ( 3 3 2.t 3 Pt ﬁﬁpz,t 1 3 t (87)
where o
v = n)\;1 + (1 =n)A, (Osc+ ¥)?,
=N, — S\q_l(esc + )2,
95 = (1—n)A " + X, (Bs.+ )%,
E=KRAL, = /f*)\ff,
qu = 0252\, + A,
where A, A7 " Ay Ags 5\q are defined in the technical appendix. In particular, under

reasonable parameters’ restriction, A7, > 0, )\;}"f >0, Ay >0, 5\(1 > 0 which imply
that £ > 0, ¥y > 0 and J3 > 0. We can write (7) and (8) in the following form

A A B
Eyzip = l A; 02 ] 2+ l 01 ] €t (88)
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where z; = (¢, ¢, 1] and ¢, = [y, po,]; € = [ug uf], A; with j =1,2,3, and B, are
two by two matrices. In particular

Ay
a21 Q22

Il
1

TR RSN I th

with

1 W
4 = (1+—+ 15“>>0

(1 —n)dslk
g
. nYoéK*
21 3

Qoo = (1+%+%>>0

and B is a block-diagonal matrix with elements ¢k, £x*. In order to study determi-
nacy, we need to inspect the roots of the characteristic polynomial associated with
the matrix A which is

P(y) = ' — (a1 + an)® + (a11a2 — azra12 + 287 )9° — (a1 + an)3 'Y + 872

A2 =

First we note that

V1hatbgihy = 5_27 (89)
Y1+ Pyt sy = an +an > 21+ 57); (90)

moreover if P(1)) = 0 then P(y"'37") = 0 so that we can further conclude that
P11y = 571 Vsthy = 571- (91)

Moreover, by Descartes sign rule all the roots are positive. We note that
P(1) = (1487 =1+ 8 ") (an + axn) + anaz — anan
e, >0
P0)=82>0

The fact that all the roots are positive and that P(1) > 0, P(0) > 0 imply that there
are either 0 or 2 real or complex roots or 4 complex roots within the unit circle.
Conditions (90) and (91) exclude the first and latter possibilities. From conditions
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(91), we can further conclude that the two roots are within the unit circle. The
unique and stable solution of the system is obtained with the following steps. Let V'
the two by four matrix of left eigenvectors associated with the unstable roots. By
pre-multiplying the system (88) with V' we obtain

Etkt+1 = Al{?t + VBGt (92)

where A is a two by two diagonal matrix of the unstable eigenvalues on the diagonal
and k; = Vz,. The unique and stable solution to (92) is given by

kt = — Z A_jVBEtEH_j

J=0

which implies that

oy = Vi Vap, 1 = Vi ATV BEe, (93)

Jj=0

where V) and V4 are such that V' = [V} V5]. Equation (93) characterizes the optimal
path of the vector ¢, given initial condition ¢_;; the paths for yy, v}, 7o, 7}, ¢: can
be derived using the conditions (76)—(80).

Targeting Rules in the General Case (Section 4)

To derive the desirable targeting rules for the general case we use the first-order
conditions (76) to (80). First, we take a weighted average with weights n and (1 —n)
of (76) and (77), obtaining

)‘;,U[nyH,t + (1 - n)y},t] =Ny, + (1—- n)SOQ,t- (94)

We take the difference of (76) and (77) and combine it with (78), obtaining

(A + 07222 (e — Ype) = (L4071 719) (01, — 024), (95)

where we have used the fact that ypm, — Yy = 0s.q;. We further note that we can
write (82) as
Ay Wre = Yre) = 70 = (Pre = P24) (96)
where we have used the relation Ay = 0s;'9[s2A) — i (7 — 1)(1 — s¢)sen(sen +
p)~'] and defined y as v = ¥ 's; (i — 1)(1 — s.)(sen +61)~'. By using (81) and
(83), we can obtain
Ny — (1= n)ya = @1y,

A Y +1YG = oy,
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which combined with (79) and (80) yields the following relation

KA TH g+ A Ayme — (1 —n)yAg =0, (97)
KL, Ty + A Ay, + nyAg = 0. (98)
We now use the following price relations, the terms of trade identity in first difference
Ty =T 1+ AS, + Thy — THt, (99)
and the PPP as well in first difference

T =nmge + (1= n)(AS; + 75,) = AS; + 7. (100)

Using (99) and (100), we can rewrite (74) and (75) as
(KA%, +NTEe + Ay Ayme — y(m — 7)) = 0, (101)
(K" A%, + )75y + Ay Ay, — y(my — 7F) =0, (102)

where 7, = (1 —n)(T} — Ty ,) and 7} = —n(T} — T} ).

Proof of determinacy of the solution implemented by the targeting rules
in the general case

We now show that the targeting rules (101) and (102), combined with the condi-
tions (99) and (100) and the constraints (59) to (61) yield to a determinate equilibrium
that coincides with the optimal cooperative solution. We follow here an argument
similar to Woodford (2003, ch. 6). It is easy to see that (101) and (102) combined
with the conditions (99) and (100) imply (74) and (75). Let us define ¢, ; and ¢,
forall t > —1 as

P10 = ANyme — (1 —n)vaqr, (103)
ot = Ny Ypy + 1Y, (104)
from which it follows that
’i/\;}hﬂH,t = _(901,t - 901,t—1)> (105)
’f*/\ﬁfﬂ:ﬂ,t = _(902,1: - 902,15—1)- (106)

Using (61) and (103)-(106), we can then retrieve the system of equations (76)—(80)
which yields to a determinate equilibrium given the initial conditions

$1,-1 = )\ZJ?JH,—l — (1 =n)yqa,

Po, 1 = Ay YR 1 +1YG1
Indeed the lagrangian multiplier ¢; _; and ¢, _; measure the commitment to expec-
tations taken in periods before time 0. The timeless perspective optimal policy is the
one that assigns a particular value to the commitment to expectations prior to period
0 such that the resulting optimal policy is time invariant.
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