
Technical appendix to
“Designing Targeting Rules for International Monetary

Policy Cooperation”
by Gianluca Benigno and Pierpaolo Benigno

Derivation of the quadratic loss functions, equations (3.21), (3.32),
(3.33) in the main text.

In this appendix, we show how to derive a second-order approximation to the sum
of the utilities of the consumers belonging to each country (the objective function of
the policymaker) which results in a quadratic form and can be correctly evaluated
by a log-linear approximation to the structural equilibrium conditions. The method
used here follows Benigno and Woodford (2003). In particular we are going to derive
equations (3.21), (3.32), (3.33) in the main text.
First we recall that each individual has an utility function of the form

U jt = Et

( ∞X
T=t

βT−t
£
U(CjT )− V (yT (j) , ξiT )

¤)
,

where the index j denotes a variable that is specific to household j and the index i
denotes a variable specific to the country H or F in which j resides. We assume the
following functional forms

U(Cjt ) ≡
(Cjt )

1−ρ

1− ρ
, V (yt(j), ξ

i
t) ≡ (ait)−η

(yt(j))
1+η

1 + η
. (1)

The objective function of the monetary policymaker of country H is to maximize the
sum of the utilities of its consumers given by

W = E0

( ∞X
t=0

βt
∙
U(Ct)− n−1

Z n

0

V (yt(h), ξt)dh

¸)
, (2)

since Cjt = Ct for all j belonging to each country because of the complete-market
assumption.
The objective of the policymaker of country F is

W ∗ = E0

( ∞X
t=0

βt
∙
U(C∗t )− (1− n)−1

Z 1

n

V (yt(f), ξ
∗
t )dh

¸)
. (3)

All the variables have the same definitions as in the main text. We further define the
inefficient wedges, µt and µ

∗
t , as a combinations of the mark-ups and the distorting

taxes in the following way

1

µt
≡ (1− τ t)(σ − 1)

σ

1

µ∗t
≡ (1− τ ∗t )(σ − 1)

σ
.
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We approximate the model around a steady state in which the three pairs of exogenous
variables (at, a∗t ), (Gt, G

∗
t ), (µt, µ

∗
t ) all take constant values equal across countries

and such that ā, Ḡ > 0 and µ̄ ≥ 1 at all times. We further focus on a steady-state
in which ΠH,t ≡ PH,t/PH,t−1 = 1 and Π∗F,t ≡ P ∗F,t/P

∗
F,t−1 = 1 at all times. The

risk-sharing condition implies that

UC(Ct) = UC(C
∗
t )

and in the steady state C̄ = C̄∗. Given that ΠH,t = 1 and Π∗F,t = 1 in the steady
state, the countries’ real marginal costs are constant and such that

UC(C̄)

µ̄
p̄H = Vy

¡
p̄−θH C̄ + Ḡ, ξ̄

¢
(4)

for country H and
UC(C̄)

µ̄
p̄F = Vy

¡
p̄−θF C̄ + Ḡ, ξ̄

¢
(5)

for country F , where pH ≡ PH/P and pF ≡ PF/P . We note that given the definition
of the general price index we can write

1 = np̄1−θH + (1− n)p̄1−θF . (6)

Given the functional forms assumed, equations (4), (5) and (6) imply that p̄H = p̄F =
1 and that ȲH = Ȳ ∗F . As well T̄ = 1, where T̄ ≡ p̄F/p̄H . We further note that unless
µ̄ = 1, the steady-state output and consumption are inefficiently low. For later use,
we define sc ≡ C̄/ȲH = C̄∗/Ȳ ∗F .
First we consider the welfare of the consumers in the home economy and take a

second-order approximation to its elements. A second-order approximation to U(Ct)
around the above defined steady state yields to

U(Ct) = ŪCC̄[Ĉt +
1

2
(1− ρ)Ĉ2t ] + t.i.p.+O(||ξ||3) (7)

where t.i.p. denotes terms that are independent of policy and O(||ξ||3) denotes terms
that are of third order or higher in the norm of the shocks. Here and in what
follows hats variables denote log-deviation of the variable from the steady state, e.g.
Ĉt ≡ lnCt/C̄. A second order expansion to the term V (yt(h), ξt) yields to

V (yt(h), ξt) = V̄yȲ [ŷt(h) +
1

2
(1 + η)ŷ2t (h)− ηâtŷt(h)] + t.i.p.+O(||ξ||3). (8)

From (8), we can obtain thatR n
0
V (yt(h), ξt)dh

n
= V̄yȲ [ŶH,t+

1

2
(1+η)Ŷ 2H,t−ηâtŶH,t+

1

2
(σ−1+η)varhŷt(h)]+t.i.p.+O(||ξ||3),

(9)
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where following Woodford (2003, ch. 6) we have defined

Ehŷt(h) ≡ n−1
Z n

0

ŷt(h)dh,

and used the following relations

Eh[ŷt(h)]
2 = varhŷt(h) + [Ehŷt(h)]

2, (10)

ŶH,t = Ehŷt(h) +
1

2

µ
σ − 1
σ

¶
varhŷt(h) +O(||ξ||3). (11)

Equation (11) is derived from a second-order expansion of the output aggregator:

YH ≡
∙µ
1

n

¶Z n

o

y(h)
σ−1
σ dh

¸ σ
σ−1
.

Using the steady-state relations, we can combine (8) and (9) to get the utility flow
at time t

wt = ŪCC[Ĉt +
1

2
(1− ρ)Ĉ2t − s−1c µ̄−1ŶH,t +

−1
2
s−1c µ̄

−1(1 + η)Ŷ 2H,t + s
−1
c µ̄

−1ηâtŶH,t +

−1
2
s−1c µ̄

−1(σ−1 + η) · varhŷt(h)] + t.i.p.+O(||ξ||3), (12)

where

wt ≡ U(Ct)−
R n
0
V (yt(h), ξt)dh

n
.

We can then plug (12) into (2) and obtain that a second-order approximation to the
welfare criterion for the home country can be written as

W = ŪCCE0{
∞X
t=0

βt[Ĉt +
1

2
(1− ρ)Ĉ2t − s−1c µ̄−1ŶH,t +

−1
2
s−1c µ̄

−1(1 + η)Ŷ 2H,t + s
−1
c µ̄

−1ηâtŶH,t +

−1
2
s−1c µ̄

−1σk−1π2H,t] + t.i.p.+O(||ξ||3), (13)

where following Woodford (2003, ch. 6) we have used the fact that

∞X
t=0

βtvarhŷt(h) =
1

k(1 + ση)
σ2

∞X
t=0

βtπ2H,t + t.i.p.+O(||ξ||3),
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for

k ≡ (1− α)(1− αβ)

α

1

(1 + ση)
.

We can write (13) in a vector-matrix notation as

W = ŪCCE0{
∞X
t=0

βt[z0xxt −
1

2
x0tZxxt − x0tZξξt −

1

2
zπhπ

2
H,t] + t.i.p.+O(||ξ||3), (14)

where
x0t ≡ [ŶH,t Ĉt p̂H,t Ŷ ∗F,t Ĉ∗t p̂F,t T̂t],

ξ0t ≡ [ât µ̂t Ĝt â∗t µ̂∗t Ĝ∗t ],
z0x ≡ [−µ̄−1s−1c 1 0 0 0 0 0],

Zx ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

µ̄−1s−1c (1 + η) 0 0 0 0 0 0
0 −(1− ρ) 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Zξ ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−µ̄−1s−1c η 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

zπh ≡ s−1c µ̄−1σk−1,
where

k∗ ≡ (1− α∗)(1− α∗β)
α∗

1

(1 + ση)
.

We can repeat the same steps and obtain a second-order approximation to the welfare
of country F as

W ∗ = ŪCCE0{
∞X
t=0

βt[Ĉ∗t +
1

2
(1− ρ)(Ĉ∗t )

2 − s−1c µ̄−1Ŷ ∗F,t +

−1
2
s−1c µ̄

−1(1 + η)[Ŷ ∗F,t]
2 + s−1c µ̄

−1ηâ∗t Ŷ
∗
F,t +

−1
2
s−1c µ̄

−1σ (k∗)−1 π∗2F,t] + t.i.p.+O(||ξ||3) (15)
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which can be re-written in a compact form as

W ∗ = ŪCCE0{
∞X
t=0

βt[z∗x
0xt − 1

2
x0tZ

∗
xxt − x0tZ∗ξ ξt −

1

2
z∗πfπ

∗2
F,t] + t.i.p.+O(||ξ||3), (16)

where
z∗x
0 ≡ [0 0 0 − µ̄−1s−1c 1 0 0],

Z∗x ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 µ̄−1s−1c (1 + η) 0 0 0
0 0 0 0 −(1− ρ) 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Z∗ξ ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −µ̄−1s−1c η 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

z∗πf ≡ s−1c µ̄−1σ (k∗)−1 .
We now derive a second-order approximation to the structural equilibrium conditions.
Let us focus on country H. As shown in the text (equation 1.5), the first-order
condition for sellers that can reset their price at time t, is

Et

( ∞X
T=t

(αβ)T−tUC(CT )
µ
p̃t(h)

PH,T

¶−σ
YH,T

∙
p̃t(h)

PH,T

PH,T
PT
− µT

Vy(ỹt,T (h), ξT )

UC(CT )

¸)
= 0,

(17)
where

ỹt,T (h) =

µ
p̃t(h)

PH,T

¶−σ
YH,T

and
P 1−σH,t = αP 1−σH,t−1 + (1− α)p̃1−σt (h), (18)

is the law of motion of the producer price index. Following Benigno and Woodford
(2003), we take a second-order approximation to equation (17) combined with a
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second-order approximation to equation (18). We integrate the resulting equation
forward starting from period 0 and obtain

V0 = E0{
∞X
t=0

βt[ηŶH,t + ρĈt − p̂H,t + µ̂t − ηât] +

1

2
[ηŶH,t + ρĈt − p̂H,t + µ̂t − ηât] · [−ρĈt + (2 + η)ŶH,t

+p̂H,t + µ̂t − ηât] +
σ(1 + η)

2k
π2H,t}+ s.o.t.i.p.+O(||ξ||3), (19)

where Vt is defined by

Vt ≡ k−1[πH,t + vππ2H,t + vzπH,tZt]
with

vπ ≡ σ(1 + η)− 1− σ

1− α
, vz ≡ 1− αβ

2
,

and

Zt = [−ρ(Ĉt − ât) + (2 + η)ŶH,t + p̂H,t + µ̂t − ηât] + vkEtπH,t+1 + αβEtZt+1,

where

vk ≡ − αβ

1− αβ
(1− 2σ − ησ).

We can write equation (19) in a vector-matrix notation as

V0 = E0{
∞X
t=0

βt[a0xxt + a
0
ξξt +

1

2
x0tAxxt + x

0
tAξξt +

1

2
aπhπ

2
H,t]

+s.o.t.i.p.+O(||ξ||3), (20)

where s.o.t.i.p. denotes second-order terms independent of policy and

a0x ≡ [ η ρ − 1 0 0 0 0],

a0ξ ≡ [−η 1 0 0 0 0],

Ax ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

η(2 + η) ρ −1 0 0 0 0
ρ −ρ2 ρ 0 0 0 0
−1 ρ −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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Aξ ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−η(1 + η) (1 + η) 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

aπh ≡ σ(1 + η)k−1.

Repeating the same steps for the foreign country, we can obtain the second-order
approximation to country F ’s AS equation as

V ∗0 = E0{
∞X
t=0

βt[b0xxt + b
0
ξξt +

1

2
x0tBxxt + x

0
tBξξt +

1

2
bπfπ

∗2
F,t]

+s.o.t.i.p.+O(||ξ||3), (21)

where
b0x ≡ [0 0 0 η ρ − 1 0],

b0ξ ≡ [0 0 0 − η 1 0],

Bx ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 η(2 + η) ρ −1 0
0 0 0 ρ −ρ2 ρ 0
0 0 0 −1 ρ −1 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Bξ ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −η(1 + η) (1 + η) 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

bπf ≡ σ(1 + η) (k∗)−1 ,

where V ∗t is defined by

V ∗t ≡ k∗−1[π∗F,t + vππ∗2F,t + vzπ∗F,tZ∗t ],
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with

Z∗t = [−ρ(Ĉ∗t − â∗t ) + (2 + η)Ŷ ∗F,t + p̂F,t + µ̂
∗
t − ηâ∗t ] + vkEtπ

∗
F,t+1 + αβEtZ

∗
t+1.

We now take a second-order expansion of the demand equation for the goods produced
in the home country, which is the LHS equation of (2.8) in the main text

YH,t =

µ
PH,t
Pt

¶−θ
[nCt + (1− n)C∗t ] +Gt,

obtaining

ŶH,t = −θscp̂H,t + nscĈt + (1− n)scĈ∗t + Ĝt +
scn(1− nsc)

2
(Ĉt)

2 +

+
sc(1− n)(1− (1− n)sc)

2
(Ĉ∗t )

2 − n(1− n)s2cĈ∗t Ĉt +

+
sc(1− sc)

2
θ2p̂2H,t − sc(1− sc)θnĈtp̂H,t − sc(1− sc)θ(1− n)Ĉ∗t p̂H,t −

−sc(nĈt + (1− n)Ĉ∗t )Ĝt + scθp̂H,tĜt + s.o.t.i.p.+O(||ξ||3), (22)

where Ĝ ≡ (Gt − Ḡ)/Ȳ . Equation (22) can be rewritten in a vector-matrix form as

∞X
t=0

βt[d0xxt + d
0
ξξt +

1

2
x0tDxxt + x

0
tDξξt] + s.o.t.i.p.+O(||ξ||3) = 0, (23)

where
d0x ≡ [−1 nsc − θsc 0 (1− n)sc 0 0],

d0ξ ≡ [0 0 0 1 0 0 0 0],

Dx ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 nsc(1− nsc) −θsc(1− sc)n 0 −n(1− n)s2c 0 0
0 −θsc(1− sc)n sc(1− sc)θ2 0 −θsc(1− sc)(1− n) 0 0
0 0 0 0 0 0 0
0 −n(1− n)s2c −θsc(1− sc)(1− n) 0 sc(1− n)(1− (1− n)sc) 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Dξ ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 −nsc 0 0 0
0 0 θsc 0 0 0
0 0 0 0 0 0
0 0 −(1− n)sc 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.
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As well, we take a second-order expansion of the demand equation for the goods
produced in the foreign country, which is RHS equation of (2.11) in the main text

Y ∗F,t =
µ
PF,t
Pt

¶−θ
[nCt + (1− n)C∗t ] +G∗t

obtaining

Ŷ ∗F,t = −θscp̂F,t + nscĈt + (1− n)scĈ∗t + Ĝ∗t +
scn(1− nsc)

2
(Ĉt)

2 +

+
sc(1− n)(1− (1− n)sc)

2
(Ĉ∗t )

2 − n(1− n)s2cĈ∗t Ĉt +

+
sc(1− sc)

2
θ2p̂2F,t − sc(1− sc)θnĈtp̂F,t − sc(1− sc)θ(1− n)Ĉ∗t p̂F,t −

−sc(nĈt + (1− n)Ĉ∗t )Ĝ∗t + scθp̂F,tĜ∗t + s.o.t.i.p.+O(||ξ||3), (24)

where Ĝ∗ ≡ (G∗t − Ḡ)/Ȳ . Equation (24) can be rewritten in a vector-matrix form as
∞X
t=0

βt[f 0xxt + f
0
ξξt +

1

2
x0tFxxt + x

0
tFξξt] + s.o.t.i.p.+O(||ξ||3) = 0, (25)

where
f 0x ≡ [0 nsc 0 − 1 (1− n)sc − θsc 0],

f 0ξ ≡ [0 0 0 0 0 0 0 1],

Fx ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 nsc(1− nsc) 0 0 −n(1− n)s2c −θsc(1− sc)n 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 −n(1− n)s2c 0 0 sc(1− n)(1− (1− n)sc) −θsc(1− sc)(1− n) 0
0 −θsc(1− sc)n 0 0 −θsc(1− sc)(1− n) sc(1− sc)θ2 0
0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Fξ ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 −nsc
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −(1− n)sc
0 0 0 0 0 θsc
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

We now derive the relation between relative prices and terms of trade exploiting the
definition of the price index (1.1) in the main text and the fact that T ≡ PF/PHµ

PH,t
Pt

¶θ−1
= n+ (1− n)T 1−θt .

9



We obtain that

p̂H,t = −(1− n)T̂t − 1
2
n(1− n)(1− θ)T̂ 2t +O(||ξ||3), (26)

∞X
t=0

βt[h0xxt +
1

2
x0tHxxt] +O(||ξ||3) = 0, (27)

where
h0x ≡ [0 0 − 1 0 0 0 − (1− n)],

Hx ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −n(1− n)(1− θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Again starting from (1.1) in the main text, we can take a second-order approximation
to µ

PF,t
Pt

¶θ−1
= nT θ−1

t + (1− n)

obtaining

p̂F,t = nT̂t − 1
2
n(1− n)(1− θ)T̂ 2t +O(||ξ||3), (28)

∞X
t=0

βt[l
0
xxt +

1

2
x0tLxxt] +O(||ξ||3) = 0, (29)

where
lx
0 ≡ [0 0 0 0 0 − 1 n],

Lx ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 −n(1− n)(1− θ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The final equation that we need to consider is the risk-sharing condition, equation
(1.3) in the main text

UC(Ct) = UC(C
∗
t )
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which is exactly log-linear with isoelastic preferences

Ĉt = Ĉ
∗
t , (30)

and can be written as ∞X
t=0

βt[m0
xxt] = 0, (31)

where
m0
x ≡ [0 1 0 0 − 1 0 0],

We now proceed to construct a quadratic approximation to the welfare criteria for the
home and foreign countries. To this purpose, we combine constraints (20), (21), (23),
(25), (27), (29), (31) to get rid of the linear terms in the expansions (14) and (16). In
particular we need to take a particular linear combination of those constraints. We
collect the vectors that multiply the endogenous variables in the linear components
of the above constraints in the following (7×7) matrix

Γ ≡ [ax bx dx fx hx lx mx].

In order to get the right weights to eliminate the linear terms in the welfare approx-
imation of the Home country, equation (14), we solve the following system of linear
equations for the vector ζ

Γζ = zx.

As well, we solve the system
Γζ∗ = z∗x

to eliminate the linear terms in the second-order approximation to country’s F wel-
fare, equation (16). We obtain

W = −1
2
ŪCC̄E0{

∞X
t=0

βt[x0tQxxt + 2x
0
tQξξt + qπhπ

2
H,t + qπfπ

∗2
F,t]}+

+K0 + t.i.p.+O(||ξ||3), (32)

where
Qx = Zx + ζ1Ax + ζ2Bx + ζ3Dx + ζ4Fx,

Qξ = Zξ + ζ1Aξ + ζ2Bξ + ζ3Dξ + ζ4Fξ,

qπh = zπh + ζ1aπh ,

qπf = ζ2bπf ,

and K0 is defined as
K0 ≡ ŪCC̄[ζ1V0 + ζ2V

∗
0 ].
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For country F we obtain that

W ∗ = −1
2
ŪCC̄E0{

∞X
t=0

βt[x0tQ
∗
xxt + 2x

0
tQ
∗
ξξt + q

∗
πh
π2H,t + q

∗
πf
π∗2F,t]}+

+K∗
0 + t.i.p.+O(||ξ||3), (33)

where
Q∗x = Z

∗
x + ζ∗1Ax + ζ∗2Bx + ζ∗3Dx + ζ∗4Fx,

Q∗ξ = Z
∗
ξ + ζ∗1Aξ + ζ∗2Bξ + ζ∗3Dξ + ζ∗4Fξ,

q∗πh = ζ∗1aπh ,

q∗πf = z
∗
πf
+ ζ∗2bπf ,

K∗
0 = ŪCC̄[ζ

∗
1V0 + ζ∗2V

∗
0 ].

We further note that by using the set of structural equilibrium conditions (22), (24),
(26), (28) and (30) up to first-order terms we can write

xt = Nxyt +Nξξt +O(||ξ||2), (34)

where y0t = [Ĉt T̂t] and

Nx =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

sc scθ(1− n)
1 0
0 −(1− n)
sc −scθn
1 0
0 n
0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Nξ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

By substituting (34) into (32) and (33), we obtain that

W = −1
2
ŪCC̄E0{

∞X
t=0

βt[y0tQ̃xyt + 2y
0
tQ̃ξξt + qπhπ

2
H,t + qπfπ

∗2
F,t]}

+K0 + t.i.p.+O(||ξ||3), (35)
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W ∗ = −1
2
ŪCC̄E0{

∞X
t=0

βt[y0tQ̃
∗
xyt + 2y

0
tQ̃
∗
ξξt + q

∗
πh
π2H,t + q

∗
πf
π∗2F,t]}

+K∗
0 + t.i.p.+O(||ξ||3), (36)

where
Q̃x = N

0
xQxNx,

Q̃ξ = N
0
xQxNξ +N

0
xQξ,

Q̃∗x = N
0
xQ

∗
xNx,

Q̃∗ξ = N
0
xQ

∗
xNξ +N

0
xQ

∗
ξ .

Starting from equations (35) and (36) which are written using matrix notation, we
build a more transparent quadratic form in terms of target variables. To this end, we
note that the world welfare

WW = nW + (1− n)W ∗,

which is defined as the weighted average of country H’s and F ’s welfares with weigths
n and (1− n), can be written as

WW = −1
2
ŪCC̄E0{

∞X
t=0

βt[y0tQ̃
W
x yt + 2y

0
tQ̃

W
ξ ξt + q

W
πh
π2H,t + q

W
πf
π∗2F,t] +

+KW
0 + t.i.p.+O(||ξ||3), (37)

where the elements of the matrices are the followings

Q̃Wx,11 =
(scη + ρ)2 + µ̄−1 (µ̄− 1) (sc − ρ)(scη + ρ)− µ̄−1 (µ̄− 1) ρ(1− sc)

scη + ρ
,

Q̃Wx,12 = 0,

Q̃Wx,21 = 0,

Q̃Wx,22 = (1−n)nθ
(scη + ρ)(1 + ηscθ) + µ̄

−1 (µ̄− 1) (sc − ρ)(1 + ηscθ)− µ̄−1 (µ̄− 1) (1− sc)
scη + ρ

,

and
Q̃Wξ,11 = n

η

scη + ρ
[µ̄−1 (µ̄− 1) (ρ− sc)− (scη + ρ)],

Q̃Wξ,12 = n
µ̄−1 (µ̄− 1) sc(1 + η)

scη + ρ
,

Q̃Wξ,13 = n
1

scη + ρ
[µ̄−1 (µ̄− 1) (scη + ρ)− µ̄−1 (µ̄− 1) ηρ+ η(scη + ρ)],
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Q̃Wξ,14 = n
−1(1− n)Q̃Wξ,11,

Q̃Wξ,15 = n
−1(1− n)Q̃Wξ,13,

Q̃Wξ,16 = n
−1(1− n)Q̃Wξ,14,

Q̃Wξ,21 = (1− n)θQ̃Wξ,11,
Q̃Wξ,22 = (1− n)θQ̃Wξ,12,

Q̃Wξ,23 = (1− n)θQ̃Wξ,13 + n(1− n)µ̄−1 (µ̄− 1)
1− ρθ

(scη + ρ)
,

Q̃Wξ,24 = −Q̃Wξ,21,
Q̃Wξ,25 = −Q̃Wξ,22,
Q̃Wξ,26 = −Q̃Wξ,23,

qWπh =
¡
µ̄−1 (µ̄− 1) sc + scη + ρ− µ̄−1 (µ̄− 1) ρ¢n σ

sck(scη + ρ)
,

qWπf =
¡
µ̄−1 (µ̄− 1) sc + scη + ρ− µ̄−1 (µ̄− 1) ρ¢ (1− n) σ

sck∗(scη + ρ)
,

KW
0 ≡ nK0 + (1− n)K∗

0 .

We observe that we can write (37) in the form

WW = −1
2
ŪCC̄E0{

∞X
t=0

βtLWt }+KW
0 + t.i.p.+O(||ξ||3),

where

LWt = λwc (Ĉt − C̃wt )2 + λ̃
w

q (T̃t − T̃wt )2 + nλwπhπ2H,t + (1− n)λwπfπ∗2F,t, (38)

λwc ≡ Q̃Wx,11, λ̃
w

q ≡ Q̃Wx,22,
λwπh = n

−1qWπh , λwπf = (1− n)−1qWπf ,
where C̃wW,t is defined as

C̃wW,t = −(nλwc )−1[Q̃Wξ,11âW,t + Q̃Wξ,12µ̂W,t + Q̃Wξ,13ĜW,t], (39)

and T̃wt as
T̃wt = −(λ̃

w

q )
−1[Q̃Wξ,21âR,t + Q̃

W
ξ,22µ̂R,t + Q̃

W
ξ,23ĜR,t], (40)

where âW,t ≡ nât + (1− n)â∗t , and âR,t ≡ ât − â∗t . (The same definitions apply to the
other shocks)
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We further note that

λ̃
w

q = (1− n)nθ[z1λwc + z2],

where

z1 ≡ (1 + θscη)

scη + ρ
z2 ≡ µ̄

−1 (µ̄− 1) (1− sc)scη(ρθ − 1)
(scη + ρ)2

with the consequence that when ρθ = 1, then z2 = 0 and z1 = θ.
We can now write (38) in another form, noting that

Ỹ wH,t ≡ scC̃wt + (1− n)θscT̃wt + Ĝt,

Ỹ wF,t ≡ scC̃wt − nθscT̃wt + Ĝ∗t ,
and that

(Ĉt − C̃wt )2 = ns−2c (ŶH,t − Ỹ wH,t)2 + (1− n)s−2c (Ŷ ∗F,t − Ỹ wF,t)2 − n(1− n)θ2(T̃t − T̃wt )2.

From the above conditions, it follows that

LWt = nλwy (ŶH,t − Ỹ wH,t)2 + (1− n)λwy (Ŷ ∗F,t − Ỹ wF,t)2+ (41)

n(1− n)λwq (T̃t − T̃wt )2 + nλwπhπ2H,t + (1− n)λwπfπ∗2F,t
where now

λwy ≡ s−2c λwc ,

λwq ≡
θ(1− θρ)

(scη + ρ)
[(scη + ρ) + µ̄−1 (µ̄− 1) (sc − 1) + µ̄−1 (µ̄− 1) (sc − ρ)].

In particular we have defined

Ỹ wH,t ≡ c1ât + c2â∗t + c3µ̂t + c∗4µ̂∗t + c5Ĝt + c6Ĝ∗t ,

Ỹ wF,t ≡ d1ât + d2â∗t + d3µ̂t + d4µ̂∗t + d5Ĝt + d6Ĝ∗t ,

c1 ≡ −
scQ

W
ξ,11 [λ

w
c (nz1 + (1− n)θ) + nz2]
nλwc (z1λ

w
c + z2)

,

c2 ≡ −
scQ̃

W
ξ,11(1− n) [λwc (z1 − θ) + z2]

nλwc (z1λ
w
c + z2)

,

c3 ≡ −
scQ̃

W
ξ,12 [λ

w
c (nz1 + (1− n)θ) + nz2]
nλwc (z1λ

w
c + z2)

,
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c4 ≡ −
scQ̃

W
ξ,12(1− n) [λwc (z1 − θ) + z2]

nλwc (z1λ
w
c + z2)

,

c5 ≡ −
"
scQ̃

W
ξ,13λ

w
c (nz1 + (1− n)θ) + scQ̃Wξ,13nz2 + n(1− n)scλwc µ̄−1 (µ̄− 1) 1−ρθ

(scη+ρ)

nλwc (z1λ
w
c + z2)

#
+1,

c6 ≡ −
"
scQ̃

W
ξ,13λ

w
c (1− n)(z1 − θ) + scQ̃

W
ξ,13(1− n)z2 − n(1− n)scλwc µ̄−1 (µ̄− 1) 1−ρθ

(scη+ρ)

nλwc (z1λ
w
c + z2)

#
,

d1 ≡ −
scQ̃

W
ξ,11 [λ

w
c (z1 − θ) + z2]

λwc (z1λ
w
c + z2)

,

d2 ≡ −
scQ̃

W
ξ,11 [λ

w
c [(1− n)z1 + nθ] + (1− n)z2]
nλwc (z1λ

w
c + z2)

,

d3 ≡ −
scQ̃

W
ξ,12 [λ

w
c (z1 − θ) + z2]

λwc (z1λ
w
c + z2)

,

d4 ≡ −
scQ̃

W
ξ,12 [λ

w
c [(1− n)z1 + nθ] + (1− n)z2]
nλwc (z1λ

w
c + z2)

,

d5 ≡ −
"
scQ̃

W
ξ,13λ

w
c (z1 − θ) + scQ̃

W
ξ,13z2 − nscλwc µ̄−1 (µ̄− 1) 1−ρθ

(scη+ρ)

λwc (z1λ
w
c + z2)

#
,

d6 ≡ −
"
scQ̃

W
ξ,13λ

w
c ((1− n)z1 + nθ) + scQ̃Wξ,13(1− n)z2 + n2scλwc µ̄−1 (µ̄− 1) 1−ρθ

(scη+ρ)

nλwc (z1λ
w
c + z2)

#
+1.

We can further use (35) and (36) to get the relative welfare criterion

WR =W −W ∗

defined as the difference between the country H’s and F ’s welfare criteria. We obtain

WR = −1
2
ŪCC̄E0

( ∞X
t=0

βtLRt

)
+KR

0 + t.i.p.+O(||ξ||3),

where
LRt ≡ y0tQ̃Rx yt + 2y0tQ̃Rξ ξt + qRπhπ2H,t + qRπfπ∗2F,t, (42)

and the elements of the matrices are

Q̃Rx,11 = 0,
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Q̃Rx,12 =
µ̄−1θ

(1 + ηθsc)
[(1− sc) + (scη + ρ)(1− θsc)],

Q̃Rx,21 = Q̃
R
x,12,

Q̃Rx,22 =
(1− 2n)µ̄−1θ
(1 + ηθsc)

[(1 + ηθsc)(1− θsc) + θ(1− sc)],

Q̃Rξ,11 = −
η

(1 + ηθsc)
µ̄−1(1− θsc),

Q̃Rξ,12 = −µ̄−1
scθ(1 + η)

(1 + ηθsc)
,

Q̃Rξ,13 = −
ρθ + ηθsc − η

(1 + ηθsc)
µ̄−1,

Q̃Rξ,14 = −Q̃Rξ,11,
Q̃Rξ,15 = −Q̃Rξ,12,
Q̃Rξ,16 = −Q̃Rξ,13,

Q̃Rξ,21 = (1− n)θQ̃Rξ,11,
Q̃Rξ,22 = (1− n)θQ̃Rξ,12,

Q̃Cξ,23 = −(1− n)
1 + ηθsc − η

(1 + ηθsc)
µ̄−1,

Q̃Rξ,24 = n(1− n)−1Q̃Rξ,21,
Q̃Rξ,25 = n(1− n)−1Q̃Rξ,22,
Q̃Rξ,26 = n(1− n)−1Q̃Rξ,23,

qRπh = µ̄
−1(1− θsc)

σ

sck(1 + ηθsc)
,

qRπf = −µ̄−1(1− θsc)
σ

sck∗(1 + ηθsc)
,

KR
0 = K0 −K∗

0 .

We can further write

LRt = 2λ
R
yq(Ĉt − C̃Rt )(T̂t − T̃ r1t ) + λRq (T̂t − T̃ r2t )2 + λRπhπ

2
H,t + λRπfπ

∗2
F,t (43)

where
λRyq ≡ Q̃Rx,12,
λRq ≡ Q̃Rx,22,
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λRπh ≡ qRπh λRπf ≡ qRπf ,
and C̃Rt is defined by

C̃Rt ≡ −(λRyq)−1[b1âW,t + b2ûW,t + b3ĜW,t], (44)

with
b1 ≡ (1− n)−1Q̃Rξ,21,

b2 ≡ (1− n)−1Q̃Rξ,22, b3 ≡ (1− n)−1Q̃Rξ,23.
T̃ r1t is defined as

T̃ r1t ≡ −(λRyq)−1[b4âR,t + b5µ̂R,t + b6ĜR,t], (45)

b4 ≡ b1θ−1,

b5 ≡ b2θ−1, b6 ≡ b3θ−1 + µ̄
−1(1− ρθ)

(1 + ηθsc)
,

and finally
T̃ r2t ≡ −(1− 2n)(λRq )−1[b1âR,t + b2µ̂R,t + b3ĜR,t].

As another way to write the relative welfare criterion we can define

Ỹ RH,t ≡ scC̃Rt + (1− n)θscT̃ r1t + Ĝt,

Ỹ RF,t ≡ scC̃Rt − nθscT̃ r1t + Ĝ∗t ,
and observe that

2θ(Ĉt−C̃Rt )(T̂t−T̃ r1t ) = s−2c (ŶH,t−Ỹ RH,t)2−s−2c (Ŷ ∗F,t−Ỹ RF,t)2−(1−2n)θ2(T̃t−T̃ r1t )2. (46)

By using (46) into (43), we obtain

LRt = λRyh(ŶH,t − Ỹ RH,t)2 − λRyf (Ŷ
∗
F,t − Ỹ RF,t)2 + λ̃

R

q (T̂t − T̃Rt )2 + λRπhπ
2
H,t + λRπfπ

2
F,t, (47)

where
λRyh = λRyf = s

−2
c λRyq/θ,

λ̃
R

q ≡ λRq − θ(1− 2n)λRyq =
θ(1− 2n)µ̄−1(1− θsc)(1− θρ)

(1 + ηθsc)
,

T̃Rt ≡ (λ̃
R

q )
−1[λRq T̃

r2
t − θ(1− 2n)λRyqT̃ r1t ].

Now we note that

Ỹ RH,t ≡ −(λRyq)−1[h1ât + h3µ̂t + h5Ĝt + h6Ĝ∗t ],
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Ỹ RF,t ≡ −(λRyq)−1[k2â∗t + k4µ̂∗t + k5Ĝt + k6Ĝ∗t ],
h1 ≡ scb1,
h3 ≡ scb2,

h5 ≡ −(λRyq) + scb3 +
θ(1− n)scµ̄−1(1− θρ)

(1 + ηθsc)
,

h6 ≡ −θ(1− n)scµ̄−1(1− θρ)

(1 + ηθsc)
,

k2 ≡ scb1,
k4 ≡ scb2,

k5 ≡ −θnscµ̄
−1(1− θρ)

(1 + ηθsc)
,

k6 ≡ −λRyq + scb3 +
θnscµ̄

−1(1− θρ)

(1 + ηθsc)
,

where

T̃Rt ≡ (λ̃
R

q )
−1
∙
θ(1− 2n)µ̄−1(1− θρ)

(1 + ηθsc)
ĜR,t

¸
.

We are now ready to retrieve in a more transparent form the welfare of the single
countries. Indeed, we note that the welfare of country H can be written as

W =WW + (1− n)WR

By using (41) and (47), we obtain that

W = −1
2
ŪCC̄E0{

∞X
t=0

βtLt}+K0 + t.i.p.+O(||ξ||3), (48)

where

Lt = λyh(ŶH,t − Ỹ hH,t)2 + λyf (Ŷ
∗
F,t − Ỹ hF,t)2 + λq(T̃t − T̃ ht )2 + λπhπ

2
H,t + λπfπ

∗2
F,t, (49)

λyh ≡ [nλwy + (1− n)λRyh ],
λyf ≡ (1− n)(λwy − λRyf ),

λπh ≡ (nλwπh + (1− n)λRπh),
λπf ≡ ((1− n)λwπf + (1− n)λRπf ),
λq ≡ (n(1− n)λwq + (1− n)λ̃

R

q ),
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Ỹ hH,t ≡ (λyh)−1(nλwy Ỹ wH,t + (1− n)λRyhỸ RH,t),
Ỹ hF,t ≡ (λyf )−1(1− n)(λwy Ỹ wF,t − λRyf Ỹ

R
F,t),

T̃ ht ≡ (λq)−1(λwq T̃wt + (1− n)λ̃
R

q T̃
R
t ).

The welfare of country F can be written as

W ∗ =WW − nWR

and we obtain that

W ∗ = −1
2
ŪCC̄E0{

∞X
t=0

βtL∗t}+K∗
0 + t.i.p.+O(||ξ||3), (50)

L∗t = λ∗yh(ŶH,t − Ỹ fH,t)2 + λ∗yf (Ŷ
∗
F,t − Ỹ fF,t)2 + λ∗q(T̃t − T̃ ft )2 + λ∗πhπ

2
H,t + λ∗πfπ

∗2
F,t, (51)

λ∗yh ≡ n(λwyh − λRyh),

λ∗yf ≡ [(1− n)λwyf + nλRyf ],
λ∗πh ≡ (nλwπh − nλRπh),

λ∗πf ≡ ((1− n)λwπf − nλRπf ),

λ∗q ≡ (λwq − nλ̃
R

q ),

Ỹ fH,t ≡ (λ∗yh)−1(nλwyhỸ wH,t − nλRyhỸ RH,t),
Ỹ fF,t ≡ (λ∗yf )−1[(1− n)λwyf Ỹ wF,t + nλRyf Ỹ RF,t],

T̃ ft ≡ (λ∗q)−1(λwq T̃wt − nλ̃
R

q T̃
R
t ).

We are assuming that policymakers are committed to additional commitments at
time 0 on the variables, Ft, Kt, F ∗t and K

∗
t . This assumption boils down to ask that

each policymaker takes as given V0 and V ∗0 as functions of predetermined and exoge-
nous variables and of the strategy of the other policymaker.1 These functions will be
self consistent, reflecting the time consistency of the solution searched, meaning that
they will be the same functions that will be obtained under the equilibrium at later
times. By inspecting the definitions of V0 and V ∗0 we note that indeed they depend
on transitional elements that are related to the specialty of time 0. The timeless per-
spective assumption implies that, in the above-derived welfare functions, the terms
K0, K∗

0 can be considered as given when maximizing the welfare. It follows that an
equivalent way to represent the maximization of the welfare of each country is to

1They can also be considered as only functions of the exogenous and predetermined variables.
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minimize the discounted sum of the quadratic losses, Lt and L∗t for policymakers H
and F, respectively.
The loss functions (41), (49) and (51) correspond to equations (3.21), (3.32), (3.33)

in the main text.

A linear-quadratic model (section 3 of the paper). Derivation of equa-
tions (3.22), (3.23) and (3.24).

The loss functions (49), (51) and (41) are indeed quadratic and can be correctly
evaluated by a log-linear approximation to the equilibrium conditions (20), (21), (23),
(25), (27), (29), (31). Up to first-order terms, these equilibrium conditions imply in
the same order

πH,t = k(ηŶH,t + ρĈt − p̂H,t + µ̂t − ηât − ρĝt) + βEtπH,t+1 (52)

π∗F,t = k
∗(ηŶ ∗F,t + ρĈ∗t − p̂F,t + µ̂∗t − ηâ∗t − ρĝ∗t ) + βEtπ

∗
F,t+1 (53)

ŶH,t = −θscp̂H,t + nscĈt + (1− n)scĈ∗t + Ĝt (54)

Ŷ ∗F,t = −θscp̂F,t + nscĈt + (1− n)scĈ∗t + Ĝ∗t (55)

p̂H,t = −(1− n)T̂t (56)

p̂F,t = nT̂t (57)

Ĉt = Ĉ
∗
t (58)

We can use equations (54)-(58) into (52) and (53) to obtain

πH,t = k[(η+ ρs−1c )ŶH,t + (1− n)(1− θρ)T̂t + µ̂t− ηât− ρĝW,t− ρs−1c Ĝt] + βEtπH,t+1,

π∗F,t = k
∗[(η + ρs−1c )Ŷ

∗
F,t − n(1− θρ)T̂t + µ̂

∗
t − ηâ∗t − ρĝW,t − ρs−1c Ĝ

∗
t ] + βEtπ

∗
F,t+1,

T̂t = θ−1s−1c (ŶH,t − Ŷ ∗F,t)
which can be further rewritten as

πH,t = κ[(ŶH,t − Ỹ wH,t) + (1− n)ψ(T̂t − T̃wt ) + ut] + βEtπH,t+1, (59)

π∗F,t = κ∗[(Ŷ ∗F,t − Ỹ wF,t)− nψ(T̂t − T̃wt ) + u∗t ] + βEtπ
∗
F,t+1, (60)

(T̂t − T̃wt ) = θ−1s−1c [(ŶH,t − Ỹ wH,t)− (Ŷ ∗F,t − Ỹ wF,t)], (61)

where we have defined κi ≡ ki(ρs−1c + η) and ψ ≡ (1− ρθ)/(ρs−1c + η) and

ut ≡ (ρs−1c + η)−1[µ̂t − ηât − ρs−1c Ĝt + (η + ρs−1c )Ỹ
w
H,t + (1− n)(1− θρ)T̃wt ],

u∗t ≡ (ρs−1c + η)−1[µ̂∗t − ηâ∗t − ρs−1c Ĝ
∗
t + (η + ρs−1c )Ỹ

w
F,t − n(1− θρ)T̃wt ].
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Equations (59), (60), (61) corresponds to equations (3.13), (3.14) and (3.15) in the
main text. To these equations, we need to add the log-linear approximation to the
constraint given by the timeless perspective equilibrium (V0 and V0), which up to a
first-order terms requires an initial constraint on πH,0 = π̄H,0 and π∗F,0 = π̄∗F,0 where
as in Woodford (2003, ch. 7), π̄H,0 and π̄∗F,0 have to be interpreted as function of the
predetermined or exogenous variables that will be self-consistent in the equilibrium
considered. In particular we note that

ut = [ξ1âW,t + ξ2µ̂W,t + ξ3ĜW,t] + (1− n)[γ1âR,t + γ2µ̂R,t + γ3ĜR,t], (62)

u∗t = [ξ1âW,t + ξ2µ̂W,t + ξ3ĜW,t]− n[γ1âR,t + γ2µ̂R,t + γ3ĜR,t], (63)

where

ξ1 ≡
ηµ̄−1 (µ̄− 1) ρ(1− sc)

λwc (scη + ρ)2
,

ξ2 ≡
µ̄−1(scη + ρ)2 − µ̄−1 (µ̄− 1) ρ(1− sc)

λwc (scη + ρ)2
,

ξ3 ≡ −
µ̄−1 (µ̄− 1) ρ(ρ+ η)

λwc (scη + ρ)2
,

γ1 ≡
n(1− n)ηθµ̄−1 (µ̄− 1) (1− sc)

λ̃
w

q (scη + ρ)2

γ2 ≡
n(1− n)θ[µ̄−1(1 + ηθsc)(scη + ρ)− µ̄−1 (µ̄− 1) (1− sc)]

λ̃
w

q (scη + ρ)2
,

γ3 ≡ −
n(1− n)µ̄−1 (µ̄− 1) (1 + θη)

λ̃
w

q (scη + ρ)2
.

Analysis of the gains from cooperation (section 3.2 and section 4 of the
paper)

This subsection presents the details of the results of section 4 of the paper. In a
non-cooperative equilibrium, each country minimizes its loss function by choosing its
path of GDP inflation as a function of the shock, taking as given the strategy of the
other policymaker. In particular, in a non-cooperative equilibriumwhere each country
commits from a timeless perspective, the policymaker in country H minimizes the
loss function (49) under the constraints (59)—(61) and the constraint that πH,0 = π̄H .
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The lagrangian of this problem can be written as

L = E0

∞X
t=0

βt[
1

2
λyh(ŶH,t − Ỹ hH,t)2 +

1

2
λyf (Ŷ

∗
F,t − Ỹ hF,t)2 +

1

2
λq(T̃t − T̃ ht )2 +

1

2
λπhπ

2
H,t

+
1

2
λπfπ

∗2
F,t] + ϕ1,t[κ

−1πH,t − (ŶH,t − Ỹ hH,t)− (1− n)ψ(T̃t − T̃ ht )− βκ−1πH,t+1] +

+ϕ2,t[κ
∗−1π∗F,t − (Ŷ ∗F,t − Ỹ hF,t) + nψ(T̃t − T̃ ht )− βκ∗−1π∗F,t+1] + n(1− n)ϕ3,t[(T̃t − T̃ ht ) +

−θ−1s−1c (ŶH,t − Ỹ hH,t) + θ−1s−1c (Ŷ
∗
F,t − Ỹ hF,t)]− ϕ1,−1κ

−1πH,0.

The first-order conditions are

λyh(ŶH,t − Ỹ hH,t)− ϕ1,t − θ−1s−1c n(1− n)ϕ3,t = 0, (64)

λyf (Ŷ
∗
F,t − Ỹ hF,t)− ϕ2,t + θ−1s−1c n(1− n)ϕ3,t = 0, (65)

λq(T̃t − T̃ ht )− (1− n)ψϕ1,t + nψϕ2,t + n(1− n)ϕ3,t = 0, (66)

λπhπH,t + κ−1(ϕ1,t − ϕ1,t−1) = 0. (67)

We now define ϕ̃1,t ≡ ϕ1,t/n and ϕ̃2,t ≡ ϕ2,t/(1− n), λ̃yh ≡ λyh/n, λ̃yf ≡ λyf/(1− n)
and λ̃a ≡ λq/(n(1− n)). We can then combine (64), (65) to get

nλ̃yh(ŶH,t − Ỹ hH,t) + (1− n)λ̃yf (Ŷ ∗F,t − Ỹ hF,t)− nϕ̃1,t − (1− n)ϕ̃2,t = 0. (68)

We take also the difference of (64) and (65) and substitute in (66) for ϕ3,t obtaining

λ̃yh(ŶH,t− Ỹ hH,t)− λ̃yf (Ŷ
∗
F,t− Ỹ hF,t)− (1+θ−1s−1c ψ)(ϕ̃1,t− ϕ̃2,t)+θ−1s−1c λ̃a(T̃t− T̃ ht ) = 0.

(69)
We can substitute (69) into (68) obtaining

ϕ̃1,t = [n+ (1− n)(1 + θ−1s−1c ψ)−1]λ̃yh(ŶH,t − Ỹ hH,t) +
+(1− n)λ̃yf θ−1s−1c ψ(1 + θ−1s−1c ψ)−1(Ŷ ∗F,t − Ỹ hF,t)
+(1− n)θ−1s−1c λ̃a(1 + θ−1s−1c ψ)−1(T̂t − T̃ ht ) (70)

We note that

(Ŷ ∗F,t − Ỹ hF,t) = ŶH,t − scθT̂t − (ĜH,t − ĜF,t)− Ỹ hF,t
= (ŶH,t − Ỹ hH,t)− scθ(T̂t − T̃ ht ) + (Ỹ hH,t − Ỹ hF,t − scθT̃ ht − (ĜH,t − ĜF,t))

We can then substitute into (70) obtaining

ϕ̃1,t = ϑ1(ŶH,t − Ỹ hH,t) + ϑ2(T̂t − T̃ ht ) + ϑ3At, (71)
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where

ϑ1 ≡ [n+ (1− n)(1 + θ−1s−1c ψ)−1]λ̃yh + (1− n)λ̃yf θ−1s−1c ψ(1 + θ−1s−1c ψ)−1,

ϑ2 ≡ (1− n)θ−1s−1c λ̃a(1 + θ−1s−1c ψ)−1 − θ(1− n)λ̃yf θ−1ψ(1 + θ−1s−1c ψ)−1,

ϑ3 ≡ (1− n)λ̃yf θ−1s−1c ψ(1 + θ−1s−1c ψ)−1,

At ≡ (Ỹ hH,t − Ỹ hF,t − scθT̃ ht − (ĜH,t − ĜF,t)).
Finally, we can combine (71) with (67) obtaining

κλ̃πhπH,t + ϑ1∆(ŶH,t − Ỹ hH,t) + ϑ2∆(T̂t − T̃ ht ) + ϑ3∆At = 0. (72)

We can repeat the same steps for the foreign country obtaining a rule of the form

κ∗λ̃
∗
πf
π∗F,t + ϑ∗1∆(Ŷ

∗
F,t − Ỹ fF,t) + ϑ∗2∆(T̂t − T̃ ft ) + ϑ∗3∆A∗t = 0, (73)

for certain parameters λ̃
∗
πf
, ϑ∗1, ϑ

∗
2, ϑ

∗
3 and variable A∗t . We finally recall from the

analysis of section 4 in the text, that the two targeting rules that implement the
cooperative solution have the following form

κλwπhπH,t + λwy∆(ŶH,t − Ỹ wH,t)− (1− n)γ∆(T̂t − T̃wt ) = 0, (74)

κ∗λwπfπ
∗
F,t + λwy∆(Ŷ

∗
F,t − Ỹ wF,t) + nγ∆(T̂t − T̃wt ) = 0. (75)

where γ ≡ ψµ̄−1s−1c η(µ̄ − 1)(1 − sc)(scη + θ−1)−1. To study under which conditions
there are no gains from cooperation, we study when the targeting rules (72) and (73)
determine the same equilibrium as the targeting rules (74) and (75). In the first two
cases, indeed, the targeting rules (72) and (73) coincide with the targeting rules (74)
and (75), respectively.

Case I: θ = 1, sc = 1, with only productivity shocks ât and â∗t .

A first case in which the targeting rules coincide and then there are no gains from
cooperation is when the loss functions, L and L∗, coincide. This is the case when
Lt = L

∗
t = L

w
t , i.e when L

R
t = 0 for each t. In particular L

R
t = 0 if and only if sc = 1,

θ = 1 and there are only productivity shocks ât and â∗t . It is then the case that under
these conditions (72) and (73) coincide with (74) and (75).

Case II: θρ = 1, sc = 1, with only productivity shocks, ât and â∗t .

The second case in which there are no gains from cooperation corresponds to the
case of independent economies. Under productivity shocks and symmetric demand
shocks, there are no gains from cooperation when sc = 1 and ρθ = 1.
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First we show that when ρθ = 1 it is possible to write the loss function for the
cooperative problem as

LWt = nλwy (ŶH,t − Ỹ wH,t)2 + (1− n)λwy (Ŷ ∗F,t − Ỹ wF,t)2 + λwπhπ
2
H,t + λwπfπ

∗2
F,t.

Moreover we note that LRt can be written as

LRt = λRyh(ŶH,t − Ỹ RH,t)2 − λRyf (Ŷ
∗
F,t − Ỹ RF,t)2 + λRπhπ

2
H,t + λRπfπ

2
F,t

We can then write Lt and L∗t as

Lt = λyh(ŶH,t − Ỹ hH,t)2 + λyf (Ŷ
∗
F,t − Ỹ hF,t)2 + λπhπ

2
H,t + λπfπ

∗2
F,t,

L∗t = λ∗yh(ŶH,t − Ỹ fH,t)2 + λ∗yf (Ŷ
∗
F,t − Ỹ fF,t)2 + λ∗πhπ

2
H,t + λ∗πfπ

∗2
F,t,

where now ẽY hH,t ≡ (λyh)−1(nλwyhỸ wH,t + (1− n)λRyhỸ RH,t),ẽY hF,t ≡ (λyf )−1(1− n)(λwyf Ỹ wF,t − λRyf Ỹ
R
F,t),

ẽY fH,t ≡ (λ∗yh)−1(nλwyhỸ wH,t − nλRyh ẽY RH,t),ẽY fF,t ≡ (λ∗yf )−1[(1− n)λwyf Ỹ wF,t + nλRyf ẽY RF,t].
It is now there case that the targeting rules in the non-cooperative equilibrium

have the form

κλπhπH,t + λyh∆(ŶH,t − ẽY hH,t) = 0,
κ∗λ∗πfπ

∗
F,t + λ∗yf∆(Ŷ

∗
F,t − ẽY hF,t) = 0,

while in the cooperative solution they have the form

κλwπhπH,t + λwy∆(ŶH,t − Ỹ wH,t) = 0,

κ∗λwπfπ
∗
F,t + λwy∆(Ŷ

∗
F,t − Ỹ wF,t) = 0.

It is clear that under the assumption θρ = 1 there are no gains from coordination

if and only if ẽY hH,t = Ỹ wH,t, ẽY hF,t = Ỹ wF,t, λyh = λwy , λyf = λwy , λπh = λwπh, λ
∗
πf
= λwπf . For

this to be the case it should be that sc = 1, with only productivity shocks ât and â∗t .
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Case III: sc = 1, with only symmetric productivity and demand shocks ât = â∗t ,
ĝt = ĝ

∗
t .

Under these assumptions the central planner loss function boils down to

LWt = nλwy (ŶH,t−Ỹ wt )2+(1−n)λwy (Ŷ ∗F,t−Ỹ wt )2+n(1−n)λwq T̂ 2t +nλwπhπ2H,t+(1−n)λwπfπ∗2F,t,

where
Ỹ wt ≡

η

η + ρ
âW,t,

while the structural equilibrium conditions collapse to

πH,t = κ[(ŶH,t − Ỹ wt ) + (1− n)ψT̂t] + βEtπH,t+1,

π∗F,t = κ∗[(Ŷ ∗F,t − Ỹ wt )− nψT̂t] + βEtπ
∗
F,t+1,

T̂t = θ−1s−1c (ŶH,t − Ŷ ∗F,t).
It is then the case that the targets πH,t = 0 and π∗F,t = 0 implement the optimal
cooperative equilibrium. It can be also shown that the loss functions Lt and L∗t can
be written as

Lt = λyh(ŶH,t − Ỹ wt )2 + λyf (Ŷ
∗
F,t − Ỹ wt )2 + λqT̂

2
t + λπhπ

2
H,t + λπfπ

∗2
F,t

L∗t = λ∗yh(ŶH,t − Ỹ wt )2 + λ∗yf (Ŷ
∗
F,t − Ỹ wt )2 + λ∗qT̂

2
t + λ∗πhπ

2
H,t + λ∗πfπ

∗2
F,t,

from which it follows that the targets πH,t = 0 and π∗F,t = 0 are also a Nash equilib-
rium. Thus there are no gains from cooperation in this case.

Analysis of the optimal cooperative allocation in the general case (sec-
tion 4 of the main text)
In a cooperative equilibrium, each country minimizes the social loss function by

choosing its path of GDP inflation as a function of the shocks. In particular, in
a cooperative equilibrium where each country commits from a timeless perspective,
the policymakers in country H and F minimize the loss function (41) under the
constraints (59)—(61) and the constraint that πH,0 = π̄H,0 and π∗F,0 = π̄∗F,0

L = E0
∞X
t=0

βt[
1

2
nλwy y

2
H,t +

1

2
(1− n)λwy y∗2F,t +

1

2
n(1− n)λwq q2t

+
1

2
nλwπhπ

2
H,t +

1

2
(1− n)λwπfπ∗2F,t] + nϕ1,t[κ−1πH,t − yH,t − (1− n)ψqt − βκ−1πH,t+1]+

+ (1− n)ϕ2,t[κ∗−1π∗F,t − y∗F,t + nψqt − βκ∗−1π∗F,t+1] + n(1− n)ϕ3,t[qt+
− θ−1s−1c yH,t + θ−1s−1c y

∗
F,t]− nϕ1,−1κ−1πH,0 − (1− n)ϕ2,−1κ∗−1π∗F,0
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with yH,t ≡ (ŶH,t−Ỹ wH,t), y∗F,t ≡ (Ŷ ∗F,t−Ỹ wF,t) and qt ≡ (T̂t−T̃wt ) and where ϕ1,t,ϕ2,t and
ϕ3,t are the lagrangian multipliers associated with (59), (60) and (61) respectively.
ϕ1,−1, ϕ2,−1 are the multipliers associated with the initial conditions πH,0 and π∗F,0.
The first-order condition with respect to yH,t, y∗F,t and qt are

λwy yH,t = ϕ1,t + (1− n)θ−1s−1c ϕ3,t, (76)

λwy y
∗
F,t = ϕ2,t − nθ−1s−1c ϕ3,t, (77)

λwq qt = ψϕ1,t − ψϕ2,t − ϕ3,t, (78)

while the ones with respect to πH,t and π∗F,t are

κλwπhπH,t = ϕ1,t − ϕ1,t−1, (79)

κ∗λwπfπ
∗
F,t = ϕ2,t − ϕ2,t−1, (80)

for each t ≥ 0.
We first characterize the properties of the optimal cooperative outcome. By taking

a weighted average with weights n and (1− n) of (76) and (77), we obtain
λwy [nyH,t + (1− n)y∗F,t] = nϕ1,t + (1− n)ϕ2,t. (81)

We then take the difference of (76) and (77) and combine it with (78), obtaining

(λwy + θ−2s−2c λwq )(yH,t − y∗F,t) = (1 + θ−1s−1c ψ)(ϕ1,t − ϕ2,t), (82)

where we have used the fact that yH,t − y∗F,t = θscqt. We further note that we can
write (82) as

λwy (yH,t − y∗F,t)− γqt = (ϕ1,t − ϕ2,t) (83)

where we have used the relation λwq = θs−1c ψ[s2cλ
w
y − µ̄−1(µ̄ − 1)(1 − sc)scη(scη +

ρ)−1] and defined γ as γ ≡ ψµ̄−1s−1c η(µ̄− 1)(1− sc)(scη + θ−1)−1.
By using (81) and (83), we can obtain

λwy yH,t − (1− n)γqt = ϕ1,t,

λwy y
∗
F,t + nγqt = ϕ2,t,

which combined with (79) and (80) yields the following relation

κλwπhπH,t + λwy∆yH,t − (1− n)γ∆qt = 0, (84)

κ∗λwπfπ
∗
F,t + λwy∆y

∗
F,t + nγ∆qt = 0. (85)

Optimality of the flexible price allocation (section 3 and 4 of the main
text)
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By inspecting (41), (59), (60) and (61), we have that when ut = u∗t = 0 it is
optimal to set πH,t = π∗F,t = 0 ∀t > 0. This occurs under the following combinations
of shocks and parameters:

Symmetric Shocks: a) sc = 1 with symmetric productivity shocks ât = â∗t ;
b) µ = 1 with symmetric productivity and public expenditure shocks ât = â∗t ,

Ĝt = Ĝ
∗
t .

In this case it is easy to check that from (62) and (63) ξ1 = 0, ξ2 = 0 and
ξ4 = 0. In general symmetric mark-up shocks imply a departure from the flexible
price allocation.

Asymmetric Shocks: a) sc = 1 with asymmetric productivity shocks ât and
â∗t .
b) µ = 1 with asymmetric productivity and public expenditure shocks, i.e. ât, â∗t ,

and Ĝt, Ĝ∗t .

Again by inspection of (62) and (63), we obtain γ1 = 0 and γ3 = 0 depending on
the cases.

Properties of the Nominal Exchange Rate under Cooperation (section
3 of the main text)

First we note that κλwπh = κ∗λwπf . We now use (82) with yH,t − y∗F,t = θscqt to get
that

qt =
(1 + θ−1s−1c ψ)

(λwy + θ−2s−2c λwq )θsc
(ϕ1,t − ϕ2,t).

By combining the previous equation with (79) and (80) and with the law of motion
of the terms of trade we get that

st =

Ã
1

κλwπh
− (1 + θ−1s−1c ψ)

(λwy + θ−2s−2c λwq )θsc

!
(ϕ1,t − ϕ2,t) + T̃

w
t .

When µ = 1 we obtain that

st =

µ
1

σ
− 1

θsc

¶
s2c

(ρ+ ηsc)
(ϕ1,t − ϕ2,t) +

η

1 + θscη

³
âR,t − ĜR,t

´
.

Note that in this case ut = µ̂t and u
∗
t = µ̂∗t . It is easy to see that when there

are only mark-up shocks then a fixed exchange rate regime would be optimal when
1
σ
= 1

θsc
. When there are no mark-up shocks it then follows htat

st =
η

1 + θscη

³
âR,t − ĜR,t

´
.
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On the other hand when sc = 1 and µ > 1

st =

µ
1

σ
− 1

θ

¶
1

(η + ρ) + µ̄−1 (µ̄− 1) (1− ρ)
(ϕ1,t − ϕ2,t) + T̃

w
t

where T̃wt is a combination of asymmetric productivity, mark-up and public expen-
diture shocks. Note that in this case ut = ξ2µ̂t + ξ3Ĝt and u

∗
t = ξ2µ̂

∗
t + ξ3Ĝ

∗
t . When

there are no mark-up or government expenditure shocks then the nominal exchange
rate follows

st =
η

1 + θη
âR,t.

Determinacy of Optimal Cooperative Solution in the General Case
(µ̄ 6= 1) (Section 4 of the main text)

We show that the first-order conditions (76)—(80) combined with the constraints
(59)—(61) and the initial conditions ϕ1,−1 and ϕ2,−1 yield to a determinate equilibrium.
First we use (76)—(80) and (61) to write (59) and (60) in terms of only the lagrangian
multipliers and the shocks as it follows

Etϕ1,t+1 =

µ
1 +

1

β
+

ϑ1ξκ

β

¶
ϕ1,t +

(1− n)ϑ2ξκ
β

ϕ2,t −
1

β
ϕ1,t−1 +

ξκ

β
ut (86)

Etϕ2,t+1 =

µ
1 +

1

β
+

ϑ3ξκ
∗

β

¶
ϕ2,t +

nϑ2ξκ
∗

β
ϕ1,t −

1

β
ϕ2,t−1 +

ξκ∗

β
u∗t (87)

where
ϑ1 ≡ nλ−1y + (1− n)λ̃−1q (θsc + ψ)2,

ϑ2 ≡ λ−1y − λ̃
−1
q (θsc + ψ)2,

ϑ3 ≡ (1− n)λ−1y + nλ̃
−1
q (θsc + ψ)2,

ξ ≡ κλwπh = κ∗λwπf ,

λ̃q ≡ θ2s2cλy + λq.

where λwπh, λ
w
πf
, λy, λq, λ̃q are defined in the technical appendix. In particular, under

reasonable parameters’ restriction, λwπh > 0, λwπf > 0, λy > 0, λ̃q > 0 which imply
that ξ > 0, ϑ1 > 0 and ϑ3 > 0. We can write (7) and (8) in the following form

Etzt+1 =

∙
A1 A2
A3 0

¸
zt +

∙
B1
0

¸
²t (88)
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where z0t ≡ [ϕt ϕt−1] and ϕt ≡ [ϕ1,t ϕ2,t]; ²0t ≡ [ut u∗t ], Aj with j = 1, 2, 3, and B1 are
two by two matrices. In particular

A ≡
∙
A1 A2
A3 0

¸

A1 ≡
∙
a11 a12
a21 a22

¸
A2 ≡

∙ −β−1 0
0 −β−1

¸
A3 ≡

∙
1 0
0 1

¸
with

a11 ≡
µ
1 +

1

β
+

ϑ1ξκ

β

¶
> 0

a12 ≡ (1− n)ϑ2ξκ
β

a21 ≡ nϑ2ξκ
∗

β

a22 ≡
µ
1 +

1

β
+

ϑ3ξκ
∗

β

¶
> 0

and B1 is a block-diagonal matrix with elements ξκ, ξκ∗. In order to study determi-
nacy, we need to inspect the roots of the characteristic polynomial associated with
the matrix A which is

P (ψ) = ψ4 − (a11 + a22)ψ3 + (a11a22 − a21a12 + 2β−1)ψ2 − (a11 + a22)β−1ψ + β−2.

First we note that
ψ1ψ2ψ3ψ4 = β−2, (89)

ψ1 + ψ2 + ψ3 + ψ4 = a11 + a22 > 2(1 + β−1); (90)

moreover if P (ψ) = 0 then P (ψ−1β−1) = 0 so that we can further conclude that

ψ1ψ2 = β−1 ψ3ψ4 = β−1. (91)

Moreover, by Descartes sign rule all the roots are positive. We note that

P (1) = (1 + β−1)2 − (1 + β−1)(a11 + a22) + a11a22 − a21a12
= ξλ−1y λ̃

−1
q > 0

P (0) = β−2 > 0

The fact that all the roots are positive and that P (1) > 0,P (0) > 0 imply that there
are either 0 or 2 real or complex roots or 4 complex roots within the unit circle.
Conditions (90) and (91) exclude the first and latter possibilities. From conditions
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(91), we can further conclude that the two roots are within the unit circle. The
unique and stable solution of the system is obtained with the following steps. Let V
the two by four matrix of left eigenvectors associated with the unstable roots. By
pre-multiplying the system (88) with V we obtain

Etkt+1 = Λkt + V B²t (92)

where Λ is a two by two diagonal matrix of the unstable eigenvalues on the diagonal
and kt ≡ V zt. The unique and stable solution to (92) is given by

kt = −
∞X
j=0

Λ−jV BEt²t+j

which implies that

ϕt = −V −11 V2ϕt−1 − V −11

∞X
j=0

Λ−jV BEt²t+j (93)

where V1 and V2 are such that V = [V1 V2]. Equation (93) characterizes the optimal
path of the vector ϕt given initial condition ϕ−1; the paths for yH , y

∗
F , πH , π

∗
F , qt can

be derived using the conditions (76)—(80).

Targeting Rules in the General Case (Section 4)

To derive the desirable targeting rules for the general case we use the first-order
conditions (76) to (80). First, we take a weighted average with weights n and (1−n)
of (76) and (77), obtaining

λwy [nyH,t + (1− n)y∗F,t] = nϕ1,t + (1− n)ϕ2,t. (94)

We take the difference of (76) and (77) and combine it with (78), obtaining

(λwy + θ−2s−2c λwq )(yH,t − y∗F,t) = (1 + θ−1s−1c ψ)(ϕ1,t − ϕ2,t), (95)

where we have used the fact that yH,t − y∗F,t = θscqt. We further note that we can
write (82) as

λwy (yH,t − y∗F,t)− γqt = (ϕ1,t − ϕ2,t) (96)

where we have used the relation λwq = θs−1c ψ[s2cλ
w
y − µ̄−1(µ̄ − 1)(1 − sc)scη(scη +

ρ)−1] and defined γ as γ ≡ ψµ̄−1s−1c η(µ̄− 1)(1− sc)(scη + θ−1)−1. By using (81) and
(83), we can obtain

λwy yH,t − (1− n)γqt = ϕ1,t,

λwy y
∗
F,t + nγqt = ϕ2,t,
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which combined with (79) and (80) yields the following relation

κλwπhπH,t + λwy∆yH,t − (1− n)γ∆qt = 0, (97)

κ∗λwπfπ
∗
F,t + λwy∆y

∗
F,t + nγ∆qt = 0. (98)

We now use the following price relations, the terms of trade identity in first difference

T̂t = T̂t−1 +∆St + π∗F,t − πH,t, (99)

and the PPP as well in first difference

πt = nπH,t + (1− n)(∆St + π∗F,t) = ∆St + π∗t . (100)

Using (99) and (100), we can rewrite (74) and (75) as

(κλwπh + γ)πH,t + λwy∆yH,t − γ(πt − π̃t) = 0, (101)

(κ∗λwπf + γ)π∗F,t + λwy∆y
∗
F,t − γ(π∗t − π̃∗t ) = 0, (102)

where π̃t ≡ (1− n)(T̃ ∗t − T̃ ∗t−1) and π̃∗t ≡ −n(T̃ ∗t − T̃ ∗t−1).
Proof of determinacy of the solution implemented by the targeting rules

in the general case

We now show that the targeting rules (101) and (102), combined with the condi-
tions (99) and (100) and the constraints (59) to (61) yield to a determinate equilibrium
that coincides with the optimal cooperative solution. We follow here an argument
similar to Woodford (2003, ch. 6). It is easy to see that (101) and (102) combined
with the conditions (99) and (100) imply (74) and (75). Let us define ϕ1,t and ϕ2,t
for all t ≥ −1 as

ϕ1,t ≡ λwy yH,t − (1− n)γqt, (103)

ϕ2,t ≡ λwy y
∗
F,t + nγqt, (104)

from which it follows that

κλwπhπH,t = −(ϕ1,t − ϕ1,t−1), (105)

κ∗λwπfπ
∗
F,t = −(ϕ2,t − ϕ2,t−1). (106)

Using (61) and (103)-(106), we can then retrieve the system of equations (76)—(80)
which yields to a determinate equilibrium given the initial conditions

ϕ1,−1 ≡ λwy yH,−1 − (1− n)γq−1,
ϕ2,−1 ≡ λwy y

∗
F,−1 + nγq−1.

Indeed the lagrangian multiplier ϕ1,−1 and ϕ2,−1 measure the commitment to expec-
tations taken in periods before time 0. The timeless perspective optimal policy is the
one that assigns a particular value to the commitment to expectations prior to period
0 such that the resulting optimal policy is time invariant.
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