Appendix for
 Debt Deleveraging and The Exchange Rate

Pierpaolo Benigno
Federica Romei

1. Derivation of loss function (23)

To derive (23), we take a second-order approximation around the final steady state of the following Lagrangian

$$
\begin{aligned}
\mathcal{L}= & \sum_{t=0}^{\infty} \beta^{t}\left\{\xi \ln \left(C_{t}\right)+(1-\xi) \ln \left(C_{t}^{*}\right)+\lambda_{1, t}\left(Y_{H, t}-\left(\alpha T_{t}^{1-\alpha} C_{t}+(1-\alpha) T_{t}^{\alpha} C_{t}^{*}\right)+\right.\right. \\
& \left.+\lambda_{2, t}\left(Y_{F, t}^{*}-\left((1-\alpha) T_{t}^{-\alpha} C_{t}+\alpha T_{t}^{\alpha-1} C_{t}^{*}\right)\right)\right\}
\end{aligned}
$$

First it should be noted that in the steady state the following conditions

$$
\begin{gather*}
\xi \bar{C}^{-1}=\bar{T}^{1-\alpha} \bar{\lambda}_{1}, \tag{1}\\
(1-\xi)\left(\bar{C}^{*}\right)^{-1}=\bar{T}^{\alpha} \bar{\lambda}_{1}, \tag{2}\\
\bar{T} \bar{\lambda}_{1}=\bar{\lambda}_{2}, \tag{3}
\end{gather*}
$$

hold together with the two resource constraints.
By taking a second-order approximation of the above Lagrangian around the abovedefined steady state, we obtain

$$
\begin{aligned}
\mathcal{L}= & \sum_{t=0}^{\infty} \beta^{t}\left\{\xi \bar{C}^{-1}\left(C_{t}-\bar{C}\right)-\xi \bar{C}^{-2}\left(C_{t}-\bar{C}\right)^{2}+(1-\xi)\left(\bar{C}^{*}\right)^{-1}\left(C_{t}^{*}-\bar{C}^{*}\right)+\right. \\
& -(1-\xi)\left(\bar{C}^{*}\right)^{-2}\left(C_{t}^{*}-\bar{C}^{*}\right)^{2}-\bar{\lambda}_{1}\left[\alpha(1-\alpha) \bar{C} \bar{T}^{-\alpha}\left(T_{t}-\bar{T}\right)+\alpha \bar{T}^{1-\alpha}\left(C_{t}-\bar{C}\right)+\right. \\
& +\alpha(1-\alpha) \bar{T}^{-\alpha}\left(T_{t}-\bar{T}\right)\left(C_{t}-\bar{C}\right)-\alpha^{2}(1-\alpha) \bar{C} \bar{T}^{-\alpha-1} \frac{\left(T_{t}-\bar{T}\right)^{2}}{2}+ \\
& +\alpha(1-\alpha) \bar{C}^{*} \bar{T}^{\alpha-1}\left(T_{t}-\bar{T}\right)+(1-\alpha) \bar{T}^{\alpha}\left(C_{t}^{*}-\bar{C}^{*}\right)+ \\
& \left.\alpha(1-\alpha) \bar{T}^{\alpha-1}\left(T_{t}-\bar{T}\right)\left(C_{t}^{*}-\bar{C}^{*}\right)-\alpha(1-\alpha)^{2} \bar{C}^{*} \bar{T}^{\alpha-2} \frac{\left(T_{t}-\bar{T}\right)^{2}}{2}\right]+ \\
& -\bar{\lambda}_{2}\left[-\alpha(1-\alpha) \bar{C} \bar{T}^{-\alpha-1}\left(T_{t}-\bar{T}\right)+(1-\alpha) \bar{T}^{-\alpha}\left(C_{t}-\bar{C}\right)+\right. \\
& -\alpha(1-\alpha) \bar{T}^{-\alpha-1}\left(T_{t}-\bar{T}\right)\left(C_{t}-\bar{C}\right)+\alpha(1+\alpha)(1-\alpha) \bar{C} \bar{T}^{-\alpha-2} \frac{\left(T_{t}-\bar{T}\right)^{2}}{2}+ \\
& +\alpha(\alpha-1) \bar{C}^{*} \bar{T}^{\alpha-2}\left(T_{t}-\bar{T}\right)+\alpha \bar{T}^{\alpha-1}\left(C_{t}^{*}-\bar{C}^{*}\right)+\alpha(\alpha-1) \bar{T}^{\alpha-2}\left(T_{t}-\bar{T}\right)\left(C_{t}^{*}-\bar{C}^{*}\right)+ \\
& \left.\left.+\alpha(\alpha-1)(\alpha-2) \bar{C}^{*} \bar{T}^{\alpha-3} \frac{\left(T_{t}-\bar{T}\right)^{2}}{2}\right]\right\}
\end{aligned}
$$

in which it should be noted that all the linear terms cancel out using the steady-state relationship. The second-order terms can be simplified and the above expression collapses to

$$
\mathcal{L}=\sum_{t=0}^{\infty} \beta^{t}\left\{-\xi\left(\tilde{C}_{t}\right)^{2}-(1-\xi)\left(\tilde{C}_{t}^{*}\right)^{-2}-\bar{\lambda}_{1} \alpha(1-\alpha) \bar{C} \bar{T}^{1-\alpha} \frac{\tilde{T}_{t}^{2}}{2}-\bar{\lambda}_{1} \alpha(1-\alpha) \bar{C}^{*} \bar{T}^{\alpha} \frac{\tilde{T}_{t}^{2}}{2}\right\}
$$

which can be further written as

$$
\mathcal{L}=\sum_{t=0}^{\infty} \beta^{t}\left\{-\xi\left(\tilde{C}_{t}\right)^{2}-(1-\xi)\left(\tilde{C}_{t}^{*}\right)^{-2}-\alpha(1-\alpha) \xi \frac{\tilde{T}_{t}^{2}}{2}-\alpha(1-\alpha)(1-\xi) \frac{\tilde{T}_{t}^{2}}{2}\right\}
$$

from which the loss function in the text follows.

2. Model equilibrium conditions

The model of Section 3 is represented by the following 18 equilibrium conditions

$$
\begin{gathered}
\left(C_{t}^{*}\right)^{-\rho}=\beta E_{t}\left\{\left(C_{t+1}^{*}\right)^{-\rho} \frac{\left(1+i_{t}\right) Q_{t}}{Q_{t+1} \Pi_{t+1}}\right\}, \\
\left(C_{t}^{*}\right)^{-\rho}=\beta E_{t}\left\{\left(C_{t+1}^{*}\right)^{-\rho} \frac{\left(1+i_{t}^{*}\right)}{\Pi_{t+1}^{*}}\right\}, \\
\left(C_{t}\right)^{-\rho}\left\{1-\left(1+i_{t}\right) \psi\left(\frac{d_{t}}{k_{t}}\right)\right\}=\beta E_{t}\left\{\left(C_{t+1}\right)^{-\rho} \frac{\left(1+i_{t}\right)}{\Pi_{t+1}}\right\},
\end{gathered}
$$

$$
\begin{aligned}
& C_{t}=p_{H, t} Y_{H, t}+\frac{d_{t}}{\left(1+i_{t}\right)}-\frac{d_{t-1}}{\Pi_{t}}-k_{t} \chi\left(\frac{d_{t}}{k_{t}}\right) \\
& Y_{F, t}^{*}=p_{F, t}^{-\theta}\left[(1-\alpha) C_{t}+\alpha Q_{t}^{\theta} C_{t}^{*}\right] \\
& Y_{H, t}=p_{H, t}^{-\theta}\left[\alpha C_{t}+(1-\alpha) Q_{t}^{\theta} C_{t}^{*}\right] \\
& p_{F, t}^{\theta-1}=\alpha\left(T_{t}\right)^{\theta-1}+(1-\alpha) \\
& p_{H, t}^{\theta-1}=\alpha+(1-\alpha)\left(T_{t}\right)^{1-\theta} \\
& \left(\frac{1-\lambda^{*}\left(\frac{\Pi_{F, t}^{*}}{\Pi^{*}}\right)^{\tau-1}}{1-\lambda^{*}}\right)^{\frac{1+\eta \tau}{\tau-1}}=\frac{F_{t}^{*}}{K_{t}^{*}} \\
& F_{t}^{*}=\left(C_{t}^{*}\right)^{-\rho} p_{F, t} \frac{1}{Q_{t}} Y_{F, t}^{*}+\beta \lambda^{*} E_{t}\left[F_{t+1}^{*}\left(\frac{\Pi_{F, t+1}^{*}}{\bar{\Pi}^{*}}\right)^{\tau-1}\right] \\
& K_{t}^{*}=\tilde{\mu}\left(Y_{F, t}^{*}\right)^{1+\eta}+\beta \lambda^{*} E_{t}\left[K_{t+1}^{*}\left(\frac{\Pi_{F, t+1}^{*}}{\bar{\Pi}^{*}}\right)^{\tau(1+\eta)}\right] \\
& \left(\frac{1-\lambda\left(\frac{\Pi_{H, t}}{\bar{\Pi}}\right)^{\tau-1}}{1-\lambda}\right)^{\frac{1+\eta \tau}{\tau-1}}=\frac{F_{t}}{K_{t}} \\
& F_{t}=\left(C_{t}\right)^{-\rho} p_{H, t} Y_{H, t}+\beta \lambda E_{t}\left[F_{t+1}\left(\frac{\Pi_{H, t+1}}{\bar{\Pi}}\right)^{\tau-1}\right] \\
& K_{t}=\tilde{\mu} Y_{H, t}^{1+\eta}+\beta \lambda E_{t}\left[K_{t+1}\left(\frac{\Pi_{H, t+1}}{\bar{\Pi}}\right)^{\tau(1+\eta)}\right] \\
& \frac{T_{t}}{T_{t-1}}=\frac{\Pi_{F, t}^{*}}{\Pi_{H, t}} \frac{S_{t}}{S_{t-1}} \\
& Q_{t}=\left[(1-\alpha) p_{H, t}^{1-\theta}+\alpha p_{F, t}^{1-\theta}\right]^{\frac{1}{1-\theta}} \\
& \Pi_{t}=\frac{\left[\alpha\left(\Pi_{H, t}\right)^{1-\theta}+(1-\alpha)\left(T_{t} \Pi_{H, t}\right)^{1-\theta}\right]^{\frac{1}{1-\theta}}}{\left[\alpha+(1-\alpha)\left(T_{t-1}\right)^{1-\theta}\right]^{\frac{1}{1-\theta}}} \\
& \Pi_{t}^{*}=\Pi_{t}\left(\frac{Q_{t}}{Q_{t-1}}\right)\left(\frac{S_{t-1}}{S_{t}}\right)
\end{aligned}
$$

which need to be solved for the following 20 unknowns $C_{t}, C_{t}^{*}, i_{t}, Q_{t}, \Pi_{t}, i_{t}^{*}, \Pi_{t}^{*}, T_{t}$, $Y_{H, t}, Y_{F, t}, d_{t}, \Pi_{F, t}^{*}, F_{t}^{*}, K_{t}^{*}, \Pi_{H, t}, F_{t}, K_{t}, S_{t} / S_{t-1}, p_{H, t}, p_{F, t}$ given the inflation targets $\bar{\Pi}^{*}$ and $\bar{\Pi}$ where two further restrictions come from the policy rules, specified in the text. Notice
that $\tilde{\mu}$ is composite mark-up including the mark-ups in the goods and labor markets, i.e. $\tilde{\mu}=\mu \cdot \mu_{w}$ where $\mu_{w} \equiv \tau /(\tau-1)$. We also have defined $p_{H, t} \equiv P_{H, t} / P_{t}$ and $p_{F, t} \equiv P_{F, t} / P_{t}$. Moreover, the zero-lower-bound constraint requires that $i_{t} \geq 0$ and $i_{t}^{*} \geq 0$. In the above equations, we have defined $\chi\left(d_{t} / k_{t}\right)=\tilde{\chi}\left(d_{t} / k, \bar{d}_{t} / k\right)$ since in equilibrium $\bar{d}_{t}=d_{t}$.

3. Model Solution

We define $y_{t} \equiv\left[z_{t} x_{t-1} w_{t}\right]$ as a vector of length n_{y} containing the control variables, z_{t}, of dimension n_{z}, the endogenous state variables, x_{t-1}, of dimension n_{x} and the exogenous state variables, w_{t}, of dimension n_{w}. In particular we may define vector of exogenous state variables more specifically, i.e.:

$$
w_{t} \equiv\left[\begin{array}{cccccccc}
k_{t} & i_{t}^{z} & i_{t}^{* z} & c_{t} & c_{t}^{*} & y_{H, t} & y_{F, t}^{*} & s_{t}
\end{array}\right]^{\prime}
$$

where k_{t} represents the safe level of debt, as defined in the main text; i_{t}^{z} and $i_{t}^{* z}$ are two variables used to model the zero-lower bound on the nominal interest rates. Indeed in the \log-linear approximation, the restriction that nominal interest rates should be above zero corresponds to have $\hat{\imath}_{t} \geq i_{t}^{z}$ and $\hat{\imath}_{t}^{*} \geq i_{t}^{* z}$. The variables $c_{t}, c_{t}^{*}, y_{H, t}, y_{F, t}^{*}$ and s_{t} are the defined in equation (14) and represent the log deviation between the final and initial steady state of $C, C^{*}, Y_{H}, Y_{F}^{*}$ and T respectively.

Finally we define ϵ as a vector of length n_{ϵ} that collects innovations to the exogenous stochastic variables. Again we may define this vector more in detail:

$$
\epsilon \equiv\left[\begin{array}{lllllll}
\left(\ln \left(k_{\min }\right)-\ln \left(k_{\max }\right)\right) & -\ln \left(\frac{\Pi}{\beta}-1\right) & -\ln \left(\frac{\Pi}{\beta}-1\right) & \epsilon_{c} & \epsilon_{c^{*}} & \epsilon_{y_{H}} & \epsilon_{y_{F}^{*}}
\end{array} \epsilon_{s}\right]^{\prime}
$$

where ϵ_{x} is defined as the \log difference between the final and initial steady state for a generic variable X, i.e. $\epsilon_{x} \equiv \ln (\bar{X})-\ln (X)$. The process for the exogenous state variables can be modeled as:

$$
w_{t}=M_{w} w_{t-1}+\tilde{C}^{t} \epsilon
$$

where M_{w} is an identity matrix of dimensions $n_{w} \times n_{w}$. \tilde{C}^{t} is matrix of dimension $n_{w} \times n_{\epsilon}$ and it is an identity matrix when $t=1$, otherwise it is a matrix of zeros.

We can write the model in a compact form as:

$$
\begin{equation*}
A \cdot y_{t+1}=B^{t} \cdot y_{t}+C^{t+1} \cdot \epsilon \tag{4}
\end{equation*}
$$

where B^{t} and C^{t+1} are time-dependent matrices, A and B^{t} have dimension $n_{y} \times n_{y}$ and
C^{t+1} has dimension $n_{y} \times n_{\epsilon}$. The matrix C^{t} is of the form

$$
C^{t+1}=\left[\begin{array}{c}
H \\
\tilde{C}^{t+1}
\end{array}\right]
$$

where H is a matrix of zeros of dimension $\left(n_{y}-n_{w}\right) \times n_{\epsilon}$.
We consider a framework which is flexible enough to treat the possibility that either Home interest rate, i_{t}, is at zero-lower bound, or Foreign interest rate, i_{t}^{*}, is at zero-lower bound, or both, or none of them. B^{t} should be adjusted accordingly depending on the different cases.

We define B^{a} as the matrix characterizing the case in which both interest rates are at zero lower bound; $B^{H}\left(B^{F}\right)$ is the matrix characterizing the case where only Home (Foreign) interest rate is at zero lower bound while B^{n} refers to the case where both interest rates are not constrained by the zero-lower bound.

In the model of Section (4), we verify the following sequence of events: from 0 to T_{1} both interest rates are at zero lower bound (T_{1} can also be 0), from T_{1} to T_{2} only the interest rate in country H is at zero lower bound. From T_{2} onwards both interest rates are above zero. This timing implies that:

$$
B^{t}= \begin{cases}B^{a} & \text { for } t \in\left(0 ; T_{1}\right] \\ B^{H} & \text { for } t \in\left(T_{1}, T_{2}\right] \\ B^{n} & \text { for } t \in\left(T_{2}, \infty\right]\end{cases}
$$

where T_{1} and T_{2} are model specific and to be determined endogenously.
In the model of Section (6), we verify the following sequence of events: from 0 to \tilde{T}_{1}, the interest rate in country F is at the zero lower bound and, from \tilde{T}_{1} onwards, both interest rates will be above zero.

This timing implies that:

$$
B^{t}= \begin{cases}B^{F} & \text { for } t \in\left(0, \tilde{T}_{1}\right] \\ B^{n} & \text { for } t \in\left(\tilde{T}_{1}, \infty\right]\end{cases}
$$

We can rewrite the system (4) by omitting the law of motion of the exogenous state variables:

$$
\left[\begin{array}{ll}
\tilde{A}_{1} & \tilde{A}_{2}
\end{array}\right]\left[\begin{array}{c}
z_{t+1} \tag{5}\\
x_{t}
\end{array}\right]=\left[\begin{array}{lll}
\tilde{B}_{1}^{t} & \tilde{B}_{2}^{t} & \tilde{B}_{3}^{t}
\end{array}\right]\left[\begin{array}{c}
z_{t} \\
x_{t-1} \\
w_{t}
\end{array}\right]
$$

where \tilde{A} is a matrix of dimension $\left(n_{y}-n_{w}\right) \times\left(n_{y}-n_{w}\right)$ which is appropriately partitioned in the matrices \tilde{A}_{1} and \tilde{A}_{2}, while \tilde{B} is a matrix of dimension $\left(n_{y}-n_{w}\right) \times n_{y}$ which is appropriately partitioned in the matrices $\tilde{B}_{1}^{t}, \tilde{B}_{2}^{t}, \tilde{B}_{3}^{t}$.

We guess the following linear solution:

$$
\begin{gathered}
z_{t}=h_{x}^{t} x_{t-1}+h_{w}^{t} w_{t-1}+h_{\epsilon}^{t} \epsilon, \\
x_{t}=g_{x}^{t} x_{t-1}+g_{w}^{t} w_{t-1}+g_{\epsilon}^{t} \epsilon, \\
w_{t}=M_{w} w_{t-1}+\tilde{C}^{t} \epsilon,
\end{gathered}
$$

We can plug the guessed solution into equation (5) and rearrange everything to get:

$$
\left.\begin{array}{c}
{\left[\begin{array}{ll}
\tilde{A}_{1} h_{x}^{t+1}+\tilde{A}_{2} & -\tilde{B}_{1}^{t}
\end{array}\right]\left[\begin{array}{l}
g_{x}^{t} \\
h_{x}^{t}
\end{array}\right]=\tilde{B}_{2}^{t}} \\
{\left[\tilde{A}_{1} h_{x}^{t+1}+\tilde{A}_{2}\right.} \\
-\tilde{B}_{1}^{t}
\end{array}\right]\left[\begin{array}{l}
g_{w}^{t} \tag{8}\\
h_{w}^{t}
\end{array}\right]=\tilde{B}_{3}^{t} M_{w}-\tilde{A}_{1} h_{w}^{t+1} M_{w}, ~\left[\tilde{A}_{1} h_{x}^{t+1}+\tilde{A}_{2}-\tilde{B}_{1}^{t}\right]\left[\begin{array}{l}
g_{\epsilon}^{t} \\
h_{\epsilon}^{t}
\end{array}\right]=\tilde{B}_{3}^{t} \tilde{C}^{t}-\tilde{A}_{1} h_{\epsilon}^{t+1}-\tilde{A}_{1} h_{w}^{t+1} \tilde{C}_{t} .
$$

Equations (6), (7) and (8) can be solved for the unknown matrices $h_{x}^{t}, h_{w}^{t}, h_{\epsilon}^{t}, g_{x}^{t}$, $g_{w}^{t}, g_{\epsilon}^{t}$ working backward. Since we know that after T_{2} (or \tilde{T}_{1} in the model with foregndenominated debt), there are no shocks and the interest rates are not constrained by the zero-lower bound, we can find the unknown time-invariant matrices $h_{x}, h_{w}, h_{\epsilon}, g_{x}, g_{w}$, g_{ϵ} which applies for each $t \geq T_{2}$ (or $t \geq T_{1}$). Then starting from these matrices, we can get all the remaining matrices by using the above equations working backward. Given an initial guess on T_{1}, T_{2} for one model and \tilde{T}_{1} for the other model, we verify that the implied path of the nominal interest rates and the stay at the zero-lower bound are consistent with the guessed timing. Otherwise, we guess another T_{1}, T_{2} or \tilde{T}_{1}, depending on the model.

4. Optimal policy

We take a second-order approximation of the welfare of world economy (25) around the final efficient steady state. First, notice that the objective can be written as

$$
U_{t}=E_{t}\left\{\sum_{t=0}^{\infty} \beta^{t}\left[\xi\left(\frac{C_{t}^{1-\rho}}{1-\rho}-\frac{Y_{H, t}^{1+\eta}}{1+\eta} \Delta_{t}\right)+(1-\xi)\left(\frac{C_{t}^{* 1-\rho}}{1-\rho}-\frac{Y_{F, t}^{* 1+\eta}}{1+\eta} \Delta_{t}^{*}\right)\right]\right\}
$$

where the indexes of price dispersion are defined as

$$
\begin{gather*}
\Delta_{t} \equiv \lambda\left(\frac{\Pi_{H, t}}{\bar{\Pi}_{t}}\right)^{(1+\eta) \tau} \Delta_{t-1}+(1-\lambda)\left(\frac{1-\lambda\left(\frac{\Pi_{H, t}}{\bar{\Pi}_{t}}\right)^{\tau-1}}{1-\lambda}\right)^{\frac{(1+\eta) \tau}{\tau-1}} \tag{9}\\
\Delta_{t}^{*} \equiv \lambda^{*}\left(\frac{\Pi_{F, t}}{\bar{\Pi}_{t}^{*}}\right)^{(1+\eta) \tau} \Delta_{t-1}^{*}+\left(1-\lambda^{*}\right)\left(\frac{1-\lambda^{*}\left(\frac{\Pi_{F, t}}{\bar{\Pi}_{t}^{*}}\right)^{\tau-1}}{1-\lambda^{*}}\right)^{\frac{(1+\eta) \tau}{\tau-1}} . \tag{10}
\end{gather*}
$$

A second-order approximation of the objective function around the efficient steady state delivers

$$
\begin{aligned}
U_{t}= & \bar{U}+E_{t}\left\{\sum _ { t = 0 } ^ { \infty } \beta ^ { t } \left[\xi \left[\bar{C}^{-\rho}\left(C_{t}-\bar{C}\right)-\bar{Y}_{H}^{\eta}\left(Y_{H, t}-\bar{Y}_{H}\right)-(1+\eta)^{-1} \bar{Y}_{H}^{1+\eta}\left(\Delta_{t}-1\right)+\right.\right.\right. \\
& \left.\frac{1}{2} \bar{C}^{-\rho-1}\left(C_{t}-\bar{C}\right)^{2}-\frac{1}{2} \bar{Y}_{H}^{\eta-1}\left(Y_{H, t}-\bar{Y}_{H}\right)^{2}\right]+(1-\xi)\left[\bar{C}^{*-\rho}\left(C_{t}^{*}-\bar{C}^{*}\right)+\right. \\
& -\bar{Y}_{F}^{* \eta}\left(Y_{F, t}^{*}-\bar{Y}_{F}^{*}\right)-(1+\eta)^{-1} \bar{Y}_{F}^{* 1+\eta}\left(\Delta_{t}^{*}-1\right)+\frac{1}{2} \bar{C}^{*-\rho-1}\left(C_{t}^{*}-\bar{C}^{*}\right)^{2}+ \\
& \left.\left.-\frac{1}{2} \bar{Y}_{F}^{* \eta-1}\left(Y_{F, t}^{*}-\bar{Y}_{F}^{*}\right)^{2}\right]\right]+\mathcal{O}\left(\|\cdot\|^{3}\right)
\end{aligned}
$$

where $\mathcal{O}\left(\|\cdot\|^{3}\right)$ contains terms of order higher than the second. We take a second-order approximation of the constraints

$$
\begin{aligned}
Y_{F, t}^{*} & =p_{F, t}^{-\theta}\left[(1-\alpha) C_{t}+\alpha Q_{t}^{\theta} C_{t}^{*}\right] \\
Y_{H, t} & =p_{H, t}^{-\theta}\left[\alpha C_{t}+(1-\alpha) Q_{t}^{\theta} C_{t}^{*}\right]
\end{aligned}
$$

considering that

$$
\begin{gathered}
\alpha p_{H, t}^{1-\theta}+(1-\alpha) p_{F, t}^{1-\theta}=1 \\
Q_{t}^{1-\theta}=(1-\alpha) p_{H, t}^{1-\theta}+\alpha p_{F, t}^{1-\theta} .
\end{gathered}
$$

where, consistently with Appendix B, we define $p_{H, t} \equiv P_{H, t} / P_{t}$ and $p_{F, t} \equiv P_{F, t} / P_{t}$.

Combining the second-order approximation of the constraints with the second-order approximation of the utility function at the efficient steady state, we can obtain after some steps that

$$
\begin{align*}
U_{t}= & \bar{U}+\xi \bar{C}^{1-\rho} E_{t}\left\{\sum _ { t = 0 } ^ { \infty } \beta ^ { t } \left[-\rho \frac{\tilde{C}_{t}^{2}}{2}-\rho \frac{\bar{C}^{*} \bar{Q}}{\bar{C}} \frac{\tilde{C}_{t}^{* 2}}{2}-\eta \frac{\bar{p}_{H} \bar{Y}_{H}}{\bar{C}} \frac{\tilde{Y}_{H, t}^{2}}{2}-\eta \frac{\bar{p}_{F} \bar{Y}_{F}^{*}}{\bar{C}} \frac{\tilde{Y}_{F, t}^{* 2}}{2}\right.\right. \\
& -\theta \frac{\bar{p}_{H} \bar{Y}_{H}}{\bar{C}} \frac{\tilde{p}_{H, t}^{2}}{2}-\theta \frac{\bar{p}_{F} \bar{Y}_{F}^{*}}{\bar{C}} \frac{\tilde{p}_{F, t}^{2}}{2}+\theta \frac{\bar{C}^{*} \bar{Q}}{\bar{C}} \frac{\tilde{Q}_{t}^{2}}{2} \\
& \left.-(1+\eta)^{-1} \frac{\bar{p}_{H} \bar{Y}_{H}}{\bar{C}}\left(\Delta_{t}-1\right)-(1+\eta)^{-1} \frac{\bar{p}_{F} \bar{Y}_{F}^{*}}{\bar{C}}\left(\Delta_{t}^{*}-1\right)\right]+\mathcal{O}\left(\|\cdot\|^{3}\right) \tag{11}
\end{align*}
$$

where we have transformed variables using the following relationship

$$
X_{t}=\bar{X}\left(1+\tilde{X}_{t}+\frac{1}{2} \tilde{X}_{t}^{2}\right)+\mathcal{O}\left(\|\cdot\|^{3}\right)
$$

for a generic variable X where \tilde{X} denotes its \log-deviation with respect to the final steady state. Notice that Δ_{t} and Δ_{t}^{*} in (11) are second-order terms which can be expressed in terms of the inflation rates by expanding through a second-order approximation (9) and (10). Using these approximations we can write (11) as

$$
\begin{align*}
U_{t}= & \bar{U}+\xi \bar{C}^{1-\rho} E_{t}\left\{\sum _ { t = 0 } ^ { \infty } \beta ^ { t } \left[-\rho \frac{\tilde{C}_{t}^{2}}{2}-\rho \frac{\bar{C}^{*} \bar{Q}}{\bar{C}} \frac{\tilde{C}_{t}^{* 2}}{2}-\eta \frac{\bar{p}_{H} \bar{Y}_{H}}{\bar{C}} \frac{\tilde{Y}_{H, t}^{2}}{2}-\eta \frac{\bar{p}_{F} \bar{Y}_{F}^{*}}{\bar{C}} \frac{\tilde{Y}_{F, t}^{* 2}}{2}\right.\right. \\
& -\theta \frac{\bar{p}_{H} \bar{Y}_{H}}{\bar{C}} \frac{\tilde{p}_{H, t}^{2}}{2}-\theta \frac{\bar{p}_{F} \bar{Y}_{F}^{*}}{\bar{C}} \frac{\tilde{p}_{F, t}^{2}}{2}+\theta \frac{\bar{C}^{*} \bar{Q}}{\bar{C}} \frac{\tilde{Q}_{t}^{2}}{2} \\
& \left.-\kappa \frac{\bar{p}_{H} \bar{Y}_{H}}{\bar{C}} \frac{\left(\pi_{H, t}-\bar{\pi}\right)^{2}}{2}-\kappa^{*} \frac{\bar{p}_{F} \bar{Y}_{F}^{*}}{\bar{C}} \frac{\left(\pi_{F, t}^{*}-\bar{\pi}^{*}\right)^{2}}{2}\right]+\mathcal{O}\left(\|\cdot\|^{3}\right) \tag{12}
\end{align*}
$$

where

$$
\kappa \equiv \frac{\lambda \tau(1+\eta \tau)}{(1-\lambda)(1-\lambda \beta)}, \quad \kappa^{*} \equiv \frac{\lambda^{*} \tau(1+\eta \tau)}{\left(1-\lambda^{*}\right)\left(1-\lambda^{*} \beta\right)}
$$

and $\pi_{H, t} \equiv \ln \Pi_{H, t}, \pi_{F, t}^{*} \equiv \ln \Pi_{F, t}^{*}, \bar{\pi} \equiv \ln \bar{\Pi}$ and $\bar{\pi}^{*} \equiv \ln \bar{\Pi}^{*}$.
The objective (12) can be written also in the equivalent form

$$
\begin{align*}
U_{t}= & \bar{U}+\xi \bar{C}^{1-\rho} E_{t}\left\{\sum _ { t = 0 } ^ { \infty } \beta ^ { t } \left[-\rho \frac{\left(\hat{C}_{t}-c\right)^{2}}{2}-\rho \frac{\bar{C}^{*} \bar{Q}}{\bar{C}} \frac{\left(\hat{C}_{t}^{*}-c^{*}\right)^{2}}{2}-\eta \frac{\bar{p}_{H} \bar{Y}_{H}}{\bar{C}} \frac{\left(\hat{Y}_{H, t}-y_{H}\right)^{2}}{2}\right.\right. \\
& -\eta \frac{\bar{p}_{F} \bar{Y}_{F}^{*}}{\bar{C}} \frac{\left(\hat{Y}_{F, t}^{*}-y_{F}^{*}\right)^{2}}{2}-\theta \frac{\bar{p}_{H} \bar{Y}_{H}}{\bar{C}} \frac{\left(\hat{p}_{H, t}-p_{H}\right)^{2}}{2}-\theta \frac{\bar{p}_{F} \bar{Y}_{F}^{*}}{\bar{C}} \frac{\left(\hat{p}_{F, t}-p_{F}\right)^{2}}{2}+\theta \frac{\bar{C}^{*} \bar{Q}}{\bar{C}} \frac{\left(\hat{Q}_{t}-Q\right)^{2}}{2} \\
& \left.-\kappa \frac{\bar{p}_{H} \bar{Y}_{H}}{\bar{C}} \frac{\left(\pi_{H, t}-\bar{\pi}\right)^{2}}{2}-\kappa^{*} \frac{\bar{p}_{F} \bar{Y}_{F}^{*}}{\bar{C}} \frac{\left(\pi_{F, t}^{*}-\bar{\pi}^{*}\right)^{2}}{2}\right]+\mathcal{O}\left(\|\cdot\|^{3}\right) \tag{13}
\end{align*}
$$

where for a generic variable X, \hat{X} denotes the log deviations with respect to the initial steady-state (before deleveraging) and x denotes the log difference between the final and initial steady state.

The objective function is now quadratic and can be appropriately evaluated by a loglinear approximation of the constraints around the initial steady state. By taking an approximation of the model equilibrium conditions presented in the above section of the Appendix, we respectively get

$$
\begin{gathered}
E_{t} \hat{C}_{t+1}^{*}=\hat{C}_{t}^{*}+\rho^{-1}\left[\hat{\imath}_{t}-E_{t}\left(\pi_{t+1}-\bar{\pi}+\hat{Q}_{t+1}-\hat{Q}_{t}\right)\right] \\
E_{t} \hat{C}_{t+1}^{*}=\hat{C}_{t}^{*}+\rho^{-1}\left[\hat{\imath}_{t}^{*}-E_{t}\left(\pi_{t+1}^{*}-\bar{\pi}^{*}\right)\right] \\
E_{t} \hat{C}_{t+1}=\hat{C}_{t}+\rho^{-1}\left[\hat{\imath}_{t}-E_{t}\left(\pi_{t+1}-\bar{\pi}\right)+\varpi_{1}\left(\hat{d}_{t}-\hat{k}_{t}\right)\right] \\
\hat{C}_{t}=v_{1}\left[\hat{p}_{H, t}+\hat{Y}_{H, t}\right]-v_{2}\left[\beta \hat{\imath}_{t}-\left(\pi_{t}-\bar{\pi}\right)\right]+v_{2} \beta \hat{d}_{t}-v_{2} \hat{d}_{t-1}-\varpi_{2}\left(\hat{d}_{t}-\hat{k}_{t}\right) \\
\hat{Y}_{F, t}^{*}=-\theta \hat{p}_{F, t}+v_{3} \hat{C}_{t}+\left(1-v_{3}\right)\left(\hat{C}_{t}^{*}+\theta \hat{Q}_{t}\right) \\
\hat{Y}_{H, t}=-\theta \hat{p}_{H, t}+v_{4} \hat{C}_{t}+\left(1-v_{4}\right)\left(\hat{C}_{t}^{*}+\theta \hat{Q}_{t}\right) \\
\hat{p}_{H, t}=-(1-\alpha) p_{F}^{1-\theta} \hat{T}_{t} \\
\hat{p}_{F, t}=\alpha p_{H}^{1-\theta} \hat{T}_{t} \\
\pi_{F, t}^{*}-\bar{\pi}^{*}=\phi^{*}\left[\eta \hat{Y}_{F, t}^{*}+\rho \hat{C}_{t}^{*}-\hat{p}_{F, t}+\hat{Q}_{t}\right]+\beta E_{t}\left(\pi_{F, t+1}^{*}-\bar{\pi}^{*}\right) \\
\hat{T}_{t}=\hat{T}_{t-1}+\left(\pi_{F, t}^{*}-\bar{\pi}^{*}\right)-\left(\pi_{H, t}-\bar{\pi}\right)+\Delta \hat{S}_{t} \\
\hat{Q}_{t}=(1-\alpha) p_{H}^{1-\theta} Q^{\theta-1} \hat{p}_{H, t}+\alpha p_{F}^{1-\theta} Q^{\theta-1} \hat{p}_{F, t} \\
=\bar{r}_{H}\left[\eta \hat{Y}_{H, t}+\rho \hat{C}_{t}-\hat{p}_{H, t}\right]+\beta E_{t}\left(\pi_{H, t+1}^{1-\theta} p_{F}^{1-\theta} Q^{\theta-1}(2 \alpha-1) \hat{T}_{t}\right. \\
\pi_{t}-\bar{\pi}=\alpha p_{H}^{1-\theta}\left(\pi_{H, t}-\bar{\pi}\right)+(1-\alpha) p_{F}^{1-\theta}\left[\left(\pi_{F, t}^{*}-\bar{\pi}^{*}\right)+\Delta \hat{S}_{t}\right] \\
\pi_{t}^{*}-\bar{\pi}=\pi_{t}-\bar{\pi}+\Delta \hat{Q}_{t}-\Delta \hat{S}_{t}
\end{gathered}
$$

where $\phi \equiv \tau / \kappa, \phi^{*} \equiv \tau / \kappa^{*}$ while these parameters are evaluated at the initial steady-state

$$
\begin{aligned}
v_{1} & =\frac{p_{H} Y_{H}}{C} \\
v_{2} & =\frac{k}{\Pi C}
\end{aligned}
$$

$$
\begin{gathered}
v_{3}=\frac{(1-\alpha) C}{(1-\alpha) C+\alpha C^{*} Q^{\theta}} \\
v_{4}=\frac{\alpha C}{\alpha C+(1-\alpha) C^{*} Q^{\theta}} \\
\varpi_{1} \equiv(1+i) \psi_{d}(1) k \\
\varpi_{2} \equiv \frac{\chi_{d}(1)}{C} .
\end{gathered}
$$

where we define $\psi_{d}(1)$ and $\chi_{d}($.$) as the partial derivatives of \chi\left(d_{t} / k_{t}\right)$ and $\psi\left(d_{t} / k_{t}\right)$ with respect to d. ${ }^{1}$

Note that under the assumption $\varpi_{1}=\varpi_{2} / \beta v_{2}$ we can re-write the Euler equation and the budget constraint of the Home country in the following ways

$$
\begin{gathered}
E_{t} \hat{C}_{t+1}=\hat{C}_{t}+\rho^{-1}\left[\hat{\imath}_{t}^{b}-E_{t}\left(\pi_{t+1}-\bar{\pi}\right)\right] \\
\hat{C}_{t}=v_{1}\left[\hat{p}_{H, t}+\hat{Y}_{H, t}\right]-v_{2}\left[\beta \hat{\imath}_{t}^{b}-\left(\pi_{t}-\bar{\pi}\right)\right]+v_{2} \beta \hat{d}_{t}-v_{2} \hat{d}_{t-1}
\end{gathered}
$$

where the effective borrowing rate $\hat{\imath}_{t}^{b}$ is defined as

$$
\hat{\imath}_{t}^{b}-\hat{\imath}_{t}=\frac{\varpi_{2}}{\beta v_{2}}\left(\hat{d}_{t}-\hat{k}_{t}\right)=\varpi_{1}\left(\hat{d}_{t}-\hat{k}_{t}\right)
$$

We maintain this assumption when calibrating the model, as explained in the text.
Optimal policy solves the maximization of (13) under the above-defined constraints, taking into account the two zero-lower-bound constraints. The equilibrium conditions of the optimal policy problem can be written in the general form (4) and therefore similar steps to those described in that section are used to solve for the response of the endogenous variables to the deleveraging shocks.

Note that by using the above restrictions, we can further write the second-order approximation of the utility as

$$
\begin{align*}
U_{t}= & \bar{U}+\xi \bar{C}^{1-\rho} E_{t}\left\{\sum _ { t = 0 } ^ { \infty } \beta ^ { t } \left[-\rho \frac{\left(\hat{C}_{t}-c\right)^{2}}{2}-\rho \frac{\bar{C}^{*} \bar{Q}}{\bar{C}} \frac{\left(\hat{C}_{t}^{*}-c^{*}\right)^{2}}{2}-\eta \frac{\bar{p}_{H} \bar{Y}_{H}}{\bar{C}} \frac{\left(\hat{Y}_{H, t}-y_{H}\right)^{2}}{2}\right.\right. \\
& -\eta \frac{\bar{p}_{F} \bar{Y}_{F}^{*}}{\bar{C}} \frac{\left(\hat{Y}_{F, t}^{*}-y_{F}^{*}\right)^{2}}{2}-\theta \bar{p}_{H}^{1-\theta} \bar{p}_{F}^{1-\theta} \alpha(1-\alpha)\left(1+\frac{\bar{C}^{*} \bar{Q}}{\bar{C}} \frac{1}{\bar{Q}^{2(1-\theta)}}\right) \frac{\left(\hat{T}_{t}-s\right)^{2}}{2} \\
& \left.-\kappa \frac{\bar{p}_{H} \bar{Y}_{H}}{\bar{C}} \frac{\left(\pi_{H, t}-\bar{\pi}\right)^{2}}{2}-\kappa \frac{\bar{p}_{F} \bar{Y}_{F}^{*}}{\bar{C}} \frac{\left(\pi_{F, t}^{*}-\bar{\pi}^{*}\right)^{2}}{2}\right]+\mathcal{O}\left(\|\cdot\|^{3}\right) \tag{14}
\end{align*}
$$

[^0]
5. Model with deleveraging on foreign debt

In this section, we discuss the extension of the model to the case in which debt of the deleveraging country is denominated in foreign currency. In this case, the flow budget can be written as

$$
\begin{equation*}
P_{t} C_{t}=\int_{0}^{1} W_{t}(j) L_{t}(j) d j+\Pi_{t}+\frac{S_{t} D_{t}}{1+i_{t}^{*}}-S_{t} D_{t-1}-f_{t} P_{t} \cdot \tilde{\chi}\left(\frac{S_{t} D_{t}}{P_{t}} \frac{1}{f_{t}}, \frac{S_{t} \bar{D}_{t}}{P_{t}} \frac{1}{f_{t}}\right) \tag{15}
\end{equation*}
$$

where now the function capturing the adjustment costs of changing the debt position has arguments expressed in terms of individual and aggregate real debt, in units of the domestic price index, with respect to a threshold f_{t}.

The following equilibrium conditions characterize now the consumers' problems in the Home country:

$$
\begin{gathered}
\left(C_{t}\right)^{-\rho}\left\{1-\left(1+i_{t}^{*}\right) \psi\left(\frac{d_{t}^{*}}{f_{t}}\right)\right\}=\beta\left(1+i_{t}^{*}\right) E_{t}\left\{\left(C_{t+1}\right)^{-\rho} \frac{P_{t}}{P_{t+1}} \frac{S_{t+1}}{S_{t}}\right\} \\
C_{t}=\frac{P_{H, t} Y_{H, t}}{P_{t}}+\frac{d_{t}^{*}}{\left(1+i_{t}^{*}\right)}-\frac{d_{t-1}^{*}}{\Pi_{t}} \frac{S_{t}}{S_{t-1}}-f_{t} \chi\left(\frac{d_{t}^{*}}{f_{t}}\right)
\end{gathered}
$$

where we have defined $d_{t}^{*}=S_{t} D_{t} / P_{t}$ and

$$
\left(C_{t}\right)^{-\rho}=\beta E_{t}\left\{\left(C_{t+1}\right)^{-\rho} \frac{\left(1+i_{t}\right)}{\Pi_{t+1}}\right\},
$$

since we are allowing for trading, within country H, of a risk-less bond denominated in domestic currency.

Note that in the final steady state now

$$
\begin{gathered}
\bar{C}=\bar{p}_{H} \bar{Y}_{H}-(1-\beta) \bar{\Pi}^{*-1} \bar{f} \\
\bar{Q} \bar{C}^{*}=\bar{p}_{F} \bar{Y}_{F}^{*}+(1-\beta) \bar{\Pi}^{*-1} \bar{f}
\end{gathered}
$$

Finally the model equilibrium conditions in a first-order approximation are now

$$
\begin{gathered}
E_{t} \hat{C}_{t+1}^{*}=\hat{C}_{t}^{*}+\rho^{-1}\left[\hat{\imath}_{t}^{*}-E_{t}\left(\pi_{t+1}^{*}-\bar{\pi}^{*}\right)\right] \\
E_{t} \hat{C}_{t+1}=\hat{C}_{t}+\rho^{-1}\left[\hat{\imath}_{t}-E_{t}\left(\pi_{t+1}-\bar{\pi}_{t}\right)\right] \\
E_{t} \hat{C}_{t+1}=\hat{C}_{t}+\rho^{-1}\left[\hat{\imath}_{t}^{*}-E_{t}\left(\pi_{t+1}-\bar{\pi}\right)+E_{t} \Delta \hat{S}_{t+1}+\tilde{\varpi}_{1}\left(\hat{d}_{t}^{*}-\hat{f}_{t}\right)\right] \\
\hat{C}_{t}=v_{1}\left[\hat{p}_{H, t}+\hat{Y}_{H, t}\right]-\tilde{v}_{2}\left[\beta \hat{\imath}_{t}^{*}-\left(\pi_{t}-\bar{\pi}\right)+\Delta \hat{S}_{t}\right]+\tilde{v}_{2} \beta \hat{d}_{t}^{*}-\tilde{v}_{2} \hat{d}_{t-1}^{*}-\tilde{\varpi}_{2}\left(\hat{d}_{t}^{*}-\hat{f}_{t}\right) \\
\hat{Y}_{F, t}^{*}=-\theta \hat{p}_{F, t}+v_{3} \hat{C}_{t}+\left(1-v_{3}\right)\left(\hat{C}_{t}^{*}+\theta \hat{Q}_{t}\right)
\end{gathered}
$$

$$
\begin{gathered}
\hat{Y}_{H, t}=-\theta \hat{p}_{H, t}+v_{4} \hat{C}_{t}+\left(1-v_{4}\right)\left(\hat{C}_{t}^{*}+\theta \hat{Q}_{t}\right) \\
\hat{p}_{H, t}=-(1-\alpha) p_{F}^{1-\theta} \hat{T}_{t} \\
\hat{p}_{F, t}=\alpha p_{H}^{1-\theta} \hat{T}_{t} \\
\pi_{H, t}-\bar{\pi}=\phi\left[\eta \hat{Y}_{H, t}+\rho \hat{C}_{t}-\hat{p}_{H, t}\right]+\beta E_{t}\left(\pi_{H, t+1}-\bar{\pi}\right) \\
\pi_{F, t}^{*}-\bar{\pi}^{*}=\phi^{*}\left[\eta \hat{Y}_{F, t}^{*}+\rho \hat{C}_{t}^{*}-\hat{p}_{F, t}+\hat{Q}_{t}\right]+\beta E_{t}\left(\pi_{F, t+1}^{*}-\bar{\pi}^{*}\right) \\
\hat{T}_{t}=\hat{T}_{t-1}+\left(\pi_{F, t}^{*}-\bar{\pi}^{*}\right)-\left(\pi_{H, t}-\bar{\pi}\right)+\Delta \hat{S}_{t} \\
\hat{Q}_{t}=(1-\alpha) p_{H}^{1-\theta} Q^{\theta-1} \hat{p}_{H, t}+\alpha p_{F}^{1-\theta} Q^{\theta-1} \hat{p}_{F, t} \\
=p_{H}^{1-\theta} p_{F}^{1-\theta} Q^{\theta-1}(2 \alpha-1) \hat{T}_{t} \\
\pi_{t}-\bar{\pi}=\alpha p_{H}^{1-\theta}\left(\pi_{H, t}-\bar{\pi}\right)+(1-\alpha) p_{F}^{1-\theta}\left[\left(\pi_{F, t}^{*}-\bar{\pi}^{*}\right)+\Delta \hat{S}_{t}\right] \\
\pi_{t}^{*}-\bar{\pi}=\pi_{t}-\bar{\pi}+\Delta \hat{Q}_{t}-\Delta \hat{S}_{t}
\end{gathered}
$$

where now

$$
\begin{gathered}
\tilde{v}_{2}=\frac{f}{\Pi^{*} C} \\
\tilde{\varpi}_{1} \equiv\left(1+i^{*}\right) \psi_{d^{*}}(1) f \\
\tilde{\varpi}_{2} \equiv \chi_{d^{*}}(1) f / C
\end{gathered}
$$

[^0]: ${ }^{1}$ The function $\chi\left(d_{t} / k_{t}\right)$ has been defined in Appendix B.

