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1. Derivation of loss function (23)

To derive (23), we take a second-order approximation around the final steady state of

the following Lagrangian

L =
∞∑
t=0

βt
{
ξ ln(Ct) + (1− ξ) ln(C∗t ) + λ1,t(YH,t − (αT 1−α

t Ct + (1− α)Tαt C
∗
t )+

+λ2,t(Y
∗
F,t − ((1− α)T−αt Ct + αTα−1

t C∗t ))
}

First it should be noted that in the steady state the following conditions

ξC̄−1 = T̄ 1−αλ̄1, (1)

(1− ξ)(C̄∗)−1 = T̄αλ̄1, (2)

T̄ λ̄1 = λ̄2, (3)

hold together with the two resource constraints.

By taking a second-order approximation of the above Lagrangian around the above-

defined steady state, we obtain
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L =
∞∑
t=0

βt
{
ξC̄−1(Ct − C̄)− ξC̄−2(Ct − C̄)2 + (1− ξ)(C̄∗)−1(C∗t − C̄∗)+

−(1− ξ)(C̄∗)−2(C∗t − C̄∗)2 − λ̄1[α(1− α)C̄T̄−α(Tt − T̄ ) + αT̄ 1−α(Ct − C̄)+

+α(1− α)T̄−α(Tt − T̄ )(Ct − C̄)− α2(1− α)C̄T̄−α−1 (Tt − T̄ )2

2
+

+α(1− α)C̄∗T̄α−1(Tt − T̄ ) + (1− α)T̄α(C∗t − C̄∗)+

α(1− α)T̄α−1(Tt − T̄ )(C∗t − C̄∗)− α(1− α)2C̄∗T̄α−2 (Tt − T̄ )2

2
]+

−λ̄2[−α(1− α)C̄T̄−α−1(Tt − T̄ ) + (1− α)T̄−α(Ct − C̄)+

−α(1− α)T̄−α−1(Tt − T̄ )(Ct − C̄) + α(1 + α)(1− α)C̄T̄−α−2 (Tt − T̄ )2

2
+

+α(α− 1)C̄∗T̄α−2(Tt − T̄ ) + αT̄α−1(C∗t − C̄∗) + α(α− 1)T̄α−2(Tt − T̄ )(C∗t − C̄∗)+

+α(α− 1)(α− 2)C̄∗T̄α−3 (Tt − T̄ )2

2
]

}
in which it should be noted that all the linear terms cancel out using the steady-state

relationship. The second-order terms can be simplified and the above expression collapses

to

L =
∞∑
t=0

βt

{
−ξ(C̃t)2 − (1− ξ)(C̃∗t )−2 − λ̄1α(1− α)C̄T̄ 1−α T̃t

2

2
− λ̄1α(1− α)C̄∗T̄α

T̃t
2

2

}

which can be further written as

L =
∞∑
t=0

βt

{
−ξ(C̃t)2 − (1− ξ)(C̃∗t )−2 − α(1− α)ξ

T̃t
2

2
− α(1− α)(1− ξ) T̃t

2

2

}

from which the loss function in the text follows.

2. Model equilibrium conditions

The model of Section 3 is represented by the following 18 equilibrium conditions

(C∗t )−ρ = βEt

{
(C∗t+1)−ρ

(1 + it)Qt

Qt+1Πt+1

}
,

(C∗t )−ρ = βEt

{
(C∗t+1)−ρ

(1 + i∗t )

Π∗t+1

}
,

(Ct)
−ρ
{

1− (1 + it)ψ

(
dt
kt

)}
= βEt

{
(Ct+1)−ρ

(1 + it)

Πt+1

}
,
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Ct = pH,tYH,t +
dt

(1 + it)
− dt−1

Πt

− ktχ
(
dt
kt

)
Y ∗F,t = p−θF,t

[
(1− α)Ct + αQθ

tC
∗
t

]
YH,t = p−θH,t

[
αCt + (1− α)Qθ

tC
∗
t

]
pθ−1
F,t = α (Tt)

θ−1 + (1− α)

pθ−1
H,t = α + (1− α) (Tt)

1−θ

1− λ∗
(

Π∗
F,t

Π̄∗

)τ−1

1− λ∗


1+ητ
τ−1

=
F ∗t
K∗t

F ∗t = (C∗t )−ρpF,t
1

Qt

Y ∗F,t + βλ∗Et

[
F ∗t+1

(
Π∗F,t+1

Π̄∗

)τ−1
]

K∗t = µ̃(Y ∗F,t)
1+η + βλ∗Et

[
K∗t+1

(
Π∗F,t+1

Π̄∗

)τ(1+η)
]

1− λ
(

ΠH,t
Π̄

)τ−1

1− λ


1+ητ
τ−1

=
Ft
Kt

Ft = (Ct)
−ρpH,tYH,t + βλEt

[
Ft+1

(
ΠH,t+1

Π̄

)τ−1
]

Kt = µ̃Y 1+η
H,t + βλEt

[
Kt+1

(
ΠH,t+1

Π̄

)τ(1+η)
]

Tt
Tt−1

=
Π∗F,t
ΠH,t

St
St−1

Qt =
[
(1− α)p1−θ

H,t + αp1−θ
F,t

] 1
1−θ

Πt =

[
α (ΠH,t)

1−θ + (1− α) (TtΠH,t)
1−θ
] 1

1−θ

[
α + (1− α) (Tt−1)1−θ

] 1
1−θ

Π∗t = Πt

(
Qt

Qt−1

)(
St−1

St

)
which need to be solved for the following 20 unknowns Ct, C

∗
t , it, Qt, Πt, i

∗
t , Π∗t , Tt,

YH,t,.YF,t, dt, Π∗F,t, F
∗
t , K

∗
t , ΠH,t, Ft, Kt, St/St−1, pH,t, pF,t given the inflation targets Π̄∗ and

Π̄ where two further restrictions come from the policy rules, specified in the text. Notice
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that µ̃ is composite mark-up including the mark-ups in the goods and labor markets, i.e.

µ̃ = µ · µw where µw ≡ τ/(τ − 1). We also have defined pH,t ≡ PH,t/Pt and pF,t ≡ PF,t/Pt.

Moreover, the zero-lower-bound constraint requires that it ≥ 0 and i∗t ≥ 0. In the above

equations, we have defined χ(dt/kt) = χ̃(dt/k, d̄t/k) since in equilibrium d̄t = dt.

3. Model Solution

We define yt ≡ [zt xt−1 wt] as a vector of length ny containing the control variables, zt,

of dimension nz, the endogenous state variables, xt−1, of dimension nx and the exogenous

state variables, wt, of dimension nw. In particular we may define vector of exogenous

state variables more specifically, i.e.:

wt ≡
[
kt izt i∗zt ct c∗t yH,t y∗F,t st

]′
where kt represents the safe level of debt, as defined in the main text; izt and i∗zt are two

variables used to model the zero-lower bound on the nominal interest rates. Indeed in

the log-linear approximation, the restriction that nominal interest rates should be above

zero corresponds to have ı̂t ≥ izt and ı̂∗t ≥ i∗zt . The variables ct, c
∗
t , yH,t, y

∗
F,t and st are

the defined in equation (14) and represent the log deviation between the final and initial

steady state of C, C∗, YH , Y ∗F and T respectively.

Finally we define ε as a vector of length nε that collects innovations to the exogenous

stochastic variables. Again we may define this vector more in detail:

ε ≡
[
(ln(kmin)− ln(kmax)) − ln(Π

β
− 1) − ln(Π

β
− 1) εc εc∗ εyH εy∗F εs

]′
where εx is defined as the log difference between the final and initial steady state for a

generic variable X, i.e. εx ≡ ln(X̄)− ln(X). The process for the exogenous state variables

can be modeled as:

wt = Mwwt−1 + C̃t ε

where Mw is an identity matrix of dimensions nw×nw. C̃t is matrix of dimension nw×nε
and it is an identity matrix when t = 1, otherwise it is a matrix of zeros.

We can write the model in a compact form as:

A · yt+1 = Bt · yt + Ct+1 · ε (4)

where Bt and Ct+1 are time-dependent matrices, A and Bt have dimension ny × ny and
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Ct+1 has dimension ny × nε. The matrix Ct is of the form

Ct+1 =

[
H

C̃t+1

]
,

where H is a matrix of zeros of dimension (ny − nw)× nε.
We consider a framework which is flexible enough to treat the possibility that either

Home interest rate, it, is at zero-lower bound, or Foreign interest rate, i∗t , is at zero-lower

bound, or both, or none of them. Bt should be adjusted accordingly depending on the

different cases.

We define Ba as the matrix characterizing the case in which both interest rates are

at zero lower bound; BH(BF ) is the matrix characterizing the case where only Home

(Foreign) interest rate is at zero lower bound while Bn refers to the case where both

interest rates are not constrained by the zero-lower bound.

In the model of Section (4), we verify the following sequence of events: from 0 to T1

both interest rates are at zero lower bound (T1 can also be 0), from T1 to T2 only the

interest rate in country H is at zero lower bound. From T2 onwards both interest rates

are above zero. This timing implies that:

Bt =


Ba for t ∈ (0;T1]

BH for t ∈ (T1, T2]

Bn for t ∈ (T2,∞]

where T1 and T2 are model specific and to be determined endogenously.

In the model of Section (6), we verify the following sequence of events: from 0 to T̃1,

the interest rate in country F is at the zero lower bound and, from T̃1 onwards, both

interest rates will be above zero.

This timing implies that:

Bt =


BF for t ∈ (0, T̃1]

Bn for t ∈ (T̃1,∞]

We can rewrite the system (4) by omitting the law of motion of the exogenous state

variables:
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[
Ã1 Ã2

] [zt+1

xt

]
=
[
B̃t

1 B̃t
2 B̃t

3

]
zt

xt−1

wt

 (5)

where Ã is a matrix of dimension (ny−nw)× (ny−nw) which is appropriately partitioned

in the matrices Ã1 and Ã2, while B̃ is a matrix of dimension (ny − nw) × ny which is

appropriately partitioned in the matrices B̃t
1, B̃t

2, B̃t
3.

We guess the following linear solution:

zt = htxxt−1 + htwwt−1 + htεε,

xt = gtxxt−1 + gtwwt−1 + gtεε,

wt = Mwwt−1 + C̃tε,

We can plug the guessed solution into equation (5) and rearrange everything to get:

[
Ã1h

t+1
x + Ã2 −B̃t

1

] [gtx
htx

]
= B̃t

2 (6)

[
Ã1h

t+1
x + Ã2 −B̃t

1

] [gtw
htw

]
= B̃t

3Mw − Ã1h
t+1
w Mw (7)

[
Ã1h

t+1
x + Ã2 −B̃t

1

] [gtε
htε

]
= B̃t

3C̃
t − Ã1h

t+1
ε − Ã1h

t+1
w C̃t (8)

Equations (6), (7) and (8) can be solved for the unknown matrices htx, h
t
w, htε, g

t
x,

gtw, gtε working backward. Since we know that after T2 (or T̃1 in the model with foregn-

denominated debt), there are no shocks and the interest rates are not constrained by the

zero-lower bound, we can find the unknown time-invariant matrices hx, hw, hε, gx, gw,

gε which applies for each t ≥ T2 (or t ≥ T1). Then starting from these matrices, we can

get all the remaining matrices by using the above equations working backward. Given an

initial guess on T1, T2 for one model and T̃1 for the other model, we verify that the implied

path of the nominal interest rates and the stay at the zero-lower bound are consistent

with the guessed timing. Otherwise, we guess another T1, T2 or T̃1, depending on the

model.
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4. Optimal policy

We take a second-order approximation of the welfare of world economy (25) around

the final efficient steady state. First, notice that the objective can be written as

Ut = Et

{
∞∑
t=0

βt

[
ξ

(
C1−ρ
t

1− ρ
−
Y 1+η
H,t

1 + η
∆t

)
+ (1− ξ)

(
C∗1−ρt

1− ρ
−
Y ∗1+η
F,t

1 + η
∆∗t

)]}

where the indexes of price dispersion are defined as

∆t ≡ λ

(
ΠH,t

Π̄t

)(1+η)τ

∆t−1 + (1− λ)

1− λ
(

ΠH,t
Π̄t

)τ−1

1− λ


(1+η)τ
τ−1

(9)

∆∗t ≡ λ∗
(

ΠF,t

Π̄∗t

)(1+η)τ

∆∗t−1 + (1− λ∗)

1− λ∗
(

ΠF,t
Π̄∗
t

)τ−1

1− λ∗


(1+η)τ
τ−1

. (10)

A second-order approximation of the objective function around the efficient steady state

delivers

Ut = Ū + Et

{
∞∑
t=0

βt[ξ[C̄−ρ(Ct − C̄)− Ȳ η
H(YH,t − ȲH)− (1 + η)−1Ȳ 1+η

H (∆t − 1)+

1

2
C̄−ρ−1(Ct − C̄)2 − 1

2
Ȳ η−1
H (YH,t − ȲH)2] + (1− ξ)[C̄∗−ρ(C∗t − C̄∗)+

−Ȳ ∗ηF (Y ∗F,t − Ȳ ∗F )− (1 + η)−1Ȳ ∗1+η
F (∆∗t − 1) +

1

2
C̄∗−ρ−1(C∗t − C̄∗)2+

−1

2
Ȳ ∗η−1
F (Y ∗F,t − Ȳ ∗F )2]] +O(‖ · ‖3)

where O(‖ · ‖3) contains terms of order higher than the second. We take a second-order

approximation of the constraints

Y ∗F,t = p−θF,t
[
(1− α)Ct + αQθ

tC
∗
t

]
,

YH,t = p−θH,t
[
αCt + (1− α)Qθ

tC
∗
t

]
,

considering that

αp1−θ
H,t + (1− α)p1−θ

F,t = 1,

Q1−θ
t = (1− α)p1−θ

H,t + αp1−θ
F,t .

where, consistently with Appendix B, we define pH,t ≡ PH,t/Pt and pF,t ≡ PF,t/Pt.
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Combining the second-order approximation of the constraints with the second-order

approximation of the utility function at the efficient steady state, we can obtain after

some steps that

Ut = Ū + ξC̄1−ρEt

{
∞∑
t=0

βt

[
−ρC̃

2
t

2
− ρC̄

∗Q̄

C̄

C̃∗2t
2
− η p̄H ȲH

C̄

Ỹ 2
H,t

2
− η p̄F Ȳ

∗
F

C̄

Ỹ ∗2F,t
2

−θ p̄H ȲH
C̄

p̃2
H,t

2
− θ p̄F Ȳ

∗
F

C̄

p̃2
F,t

2
+ θ

C̄∗Q̄

C̄

Q̃2
t

2

−(1 + η)−1 p̄H ȲH
C̄

(∆t − 1)− (1 + η)−1 p̄F Ȳ
∗
F

C̄
(∆∗t − 1)

]
+O(‖ · ‖3) (11)

where we have transformed variables using the following relationship

Xt = X̄

(
1 + X̃t +

1

2
X̃2
t

)
+O(‖ · ‖3)

for a generic variable X where X̃ denotes its log-deviation with respect to the final steady

state. Notice that ∆t and ∆∗t in (11) are second-order terms which can be expressed in

terms of the inflation rates by expanding through a second-order approximation (9) and

(10). Using these approximations we can write (11) as

Ut = Ū + ξC̄1−ρEt

{
∞∑
t=0

βt

[
−ρC̃

2
t

2
− ρC̄

∗Q̄

C̄

C̃∗2t
2
− η p̄H ȲH

C̄

Ỹ 2
H,t

2
− η p̄F Ȳ

∗
F

C̄

Ỹ ∗2F,t
2

−θ p̄H ȲH
C̄

p̃2
H,t

2
− θ p̄F Ȳ

∗
F

C̄

p̃2
F,t

2
+ θ

C̄∗Q̄

C̄

Q̃2
t

2

−κp̄H ȲH
C̄

(πH,t − π̄)2

2
− κ∗ p̄F Ȳ

∗
F

C̄

(π∗F,t − π̄∗)2

2

]
+O(‖ · ‖3) (12)

where

κ ≡ λτ(1 + ητ)

(1− λ)(1− λβ)
, κ∗ ≡ λ∗τ(1 + ητ)

(1− λ∗)(1− λ∗β)
,

and πH,t ≡ ln ΠH,t, π
∗
F,t ≡ ln Π∗F,t, π̄ ≡ ln Π̄ and π̄∗ ≡ ln Π̄∗.

The objective (12) can be written also in the equivalent form

Ut = Ū + ξC̄1−ρEt

{
∞∑
t=0

βt

[
−ρ(Ĉt − c)2

2
− ρC̄

∗Q̄

C̄

(Ĉ∗t − c∗)2

2
− η p̄H ȲH

C̄

(ŶH,t − yH)2

2

−η p̄F Ȳ
∗
F

C̄

(Ŷ ∗F,t − y∗F )2

2
− θ p̄H ȲH

C̄

(p̂H,t − pH)2

2
− θ p̄F Ȳ

∗
F

C̄

(p̂F,t − pF )2

2
+ θ

C̄∗Q̄

C̄

(Q̂t −Q)2

2

−κp̄H ȲH
C̄

(πH,t − π̄)2

2
− κ∗ p̄F Ȳ

∗
F

C̄

(π∗F,t − π̄∗)2

2

]
+O(‖ · ‖3) (13)
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where for a generic variable X, X̂ denotes the log deviations with respect to the initial

steady-state (before deleveraging) and x denotes the log difference between the final and

initial steady state.

The objective function is now quadratic and can be appropriately evaluated by a log-

linear approximation of the constraints around the initial steady state. By taking an

approximation of the model equilibrium conditions presented in the above section of the

Appendix, we respectively get

EtĈ
∗
t+1 = Ĉ∗t + ρ−1 [̂ıt − Et(πt+1 − π̄ + Q̂t+1 − Q̂t)]

EtĈ
∗
t+1 = Ĉ∗t + ρ−1 [̂ı∗t − Et(π∗t+1 − π̄∗)]

EtĈt+1 = Ĉt + ρ−1 [̂ıt − Et(πt+1 − π̄) +$1(d̂t − k̂t)]

Ĉt = υ1[p̂H,t + ŶH,t]− υ2[βı̂t − (πt − π̄)] + υ2βd̂t − υ2d̂t−1 −$2(d̂t − k̂t)

Ŷ ∗F,t = −θp̂F,t + υ3Ĉt + (1− υ3)(Ĉ∗t + θQ̂t)

ŶH,t = −θp̂H,t + υ4Ĉt + (1− υ4)(Ĉ∗t + θQ̂t)

p̂H,t = −(1− α)p1−θ
F T̂t

p̂F,t = αp1−θ
H T̂t

πH,t − π̄ = φ[ηŶH,t + ρĈt − p̂H,t] + βEt(πH,t+1 − π̄)

π∗F,t − π̄∗ = φ∗[ηŶ ∗F,t + ρĈ∗t − p̂F,t + Q̂t] + βEt
(
π∗F,t+1 − π̄∗

)
T̂t = T̂t−1 + (π∗F,t − π̄∗)− (πH,t − π̄) + ∆Ŝt

Q̂t = (1− α)p1−θ
H Qθ−1p̂H,t + αp1−θ

F Qθ−1p̂F,t

= p1−θ
H p1−θ

F Qθ−1(2α− 1)T̂t

πt − π̄ = αp1−θ
H (πH,t − π̄) + (1− α)p1−θ

F [(π∗F,t − π̄∗) + ∆Ŝt]

π∗t − π̄ = πt − π̄ + ∆Q̂t −∆Ŝt

where φ ≡ τ/κ, φ∗ ≡ τ/κ∗ while these parameters are evaluated at the initial steady-state

υ1 =
pHYH
C

υ2 =
k

ΠC
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υ3 =
(1− α)C

(1− α)C + αC∗Qθ

υ4 =
αC

αC + (1− α)C∗Qθ

$1 ≡ (1 + i)ψd(1)k

$2 ≡
χd(1)

C
.

where we define ψd(1) and χd(.) as the partial derivatives of χ(dt/kt) and ψ(dt/kt) with

respect to d.1

Note that under the assumption $1 = $2/βυ2 we can re-write the Euler equation and

the budget constraint of the Home country in the following ways

EtĈt+1 = Ĉt + ρ−1 [̂ıbt − Et(πt+1 − π̄)]

Ĉt = υ1[p̂H,t + ŶH,t]− υ2[βı̂bt − (πt − π̄)] + υ2βd̂t − υ2d̂t−1

where the effective borrowing rate ı̂bt is defined as

ı̂bt − ı̂t =
$2

βυ2

(d̂t − k̂t) = $1(d̂t − k̂t).

We maintain this assumption when calibrating the model, as explained in the text.

Optimal policy solves the maximization of (13) under the above-defined constraints,

taking into account the two zero-lower-bound constraints. The equilibrium conditions of

the optimal policy problem can be written in the general form (4) and therefore similar

steps to those described in that section are used to solve for the response of the endogenous

variables to the deleveraging shocks.

Note that by using the above restrictions, we can further write the second-order ap-

proximation of the utility as

Ut = Ū + ξC̄1−ρEt

{
∞∑
t=0

βt

[
−ρ(Ĉt − c)2

2
− ρC̄

∗Q̄

C̄

(Ĉ∗t − c∗)2

2
− η p̄H ȲH

C̄

(ŶH,t − yH)2

2

−η p̄F Ȳ
∗
F

C̄

(Ŷ ∗F,t − y∗F )2

2
− θp̄1−θ

H p̄1−θ
F α(1− α)

(
1 +

C̄∗Q̄

C̄

1

Q̄2(1−θ)

)
(T̂t − s)2

2

−κp̄H ȲH
C̄

(πH,t − π̄)2

2
− κ∗ p̄F Ȳ

∗
F

C̄

(π∗F,t − π̄∗)2

2

]
+O(‖ · ‖3) (14)

1The function χ (dt/kt) has been defined in Appendix B.
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5. Model with deleveraging on foreign debt

In this section, we discuss the extension of the model to the case in which debt of the

deleveraging country is denominated in foreign currency. In this case, the flow budget

can be written as

PtCt =

∫ 1

0

Wt(j)Lt(j)dj + Πt +
StDt

1 + i∗t
− StDt−1 − ftPt · χ̃

(
StDt

Pt

1

ft
,
StD̄t

Pt

1

ft

)
(15)

where now the function capturing the adjustment costs of changing the debt position

has arguments expressed in terms of individual and aggregate real debt, in units of the

domestic price index, with respect to a threshold ft.

The following equilibrium conditions characterize now the consumers’ problems in the

Home country:

(Ct)
−ρ
{

1− (1 + i∗t )ψ

(
d∗t
ft

)}
= β(1 + i∗t )Et

{
(Ct+1)−ρ

Pt
Pt+1

St+1

St

}
,

Ct =
PH,tYH,t
Pt

+
d∗t

(1 + i∗t )
−
d∗t−1

Πt

St
St−1

− ftχ
(
d∗t
ft

)
where we have defined d∗t = StDt/Pt and

(Ct)
−ρ = βEt

{
(Ct+1)−ρ

(1 + it)

Πt+1

}
,

since we are allowing for trading, within country H, of a risk-less bond denominated in

domestic currency.

Note that in the final steady state now

C̄ = p̄H ȲH − (1− β)Π̄∗−1f̄ ,

Q̄C̄∗ = p̄F Ȳ
∗
F + (1− β)Π̄∗−1f̄ ,

Finally the model equilibrium conditions in a first-order approximation are now

EtĈ
∗
t+1 = Ĉ∗t + ρ−1 [̂ı∗t − Et(π∗t+1 − π̄∗)]

EtĈt+1 = Ĉt + ρ−1 [̂ıt − Et(πt+1 − π̄t)]

EtĈt+1 = Ĉt + ρ−1 [̂ı∗t − Et(πt+1 − π̄) + Et∆Ŝt+1 + $̃1(d̂∗t − f̂t)]

Ĉt = υ1[p̂H,t + ŶH,t]− υ̃2[βı̂∗t − (πt − π̄) + ∆Ŝt] + υ̃2βd̂
∗
t − υ̃2d̂

∗
t−1 − $̃2(d̂∗t − f̂t)

Ŷ ∗F,t = −θp̂F,t + υ3Ĉt + (1− υ3)(Ĉ∗t + θQ̂t)
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ŶH,t = −θp̂H,t + υ4Ĉt + (1− υ4)(Ĉ∗t + θQ̂t)

p̂H,t = −(1− α)p1−θ
F T̂t

p̂F,t = αp1−θ
H T̂t

πH,t − π̄ = φ[ηŶH,t + ρĈt − p̂H,t] + βEt(πH,t+1 − π̄)

π∗F,t − π̄∗ = φ∗[ηŶ ∗F,t + ρĈ∗t − p̂F,t + Q̂t] + βEt
(
π∗F,t+1 − π̄∗

)
T̂t = T̂t−1 + (π∗F,t − π̄∗)− (πH,t − π̄) + ∆Ŝt

Q̂t = (1− α)p1−θ
H Qθ−1p̂H,t + αp1−θ

F Qθ−1p̂F,t

= p1−θ
H p1−θ

F Qθ−1(2α− 1)T̂t

πt − π̄ = αp1−θ
H (πH,t − π̄) + (1− α)p1−θ

F [(π∗F,t − π̄∗) + ∆Ŝt]

π∗t − π̄ = πt − π̄ + ∆Q̂t −∆Ŝt

where now

υ̃2 =
f

Π∗C

$̃1 ≡ (1 + i∗)ψd∗(1)f

$̃2 ≡ χd∗(1)f/C.
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