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Appendix A
In this appendix we show that assets and consumption are stationary variables.

Lemma 1 Given equation (10) in the text and the optimality conditions describing
the optimal path of consumption (i),(ii),(iii), and given the initial condition
Bit−1 = 0 for each i = H, F it follows that BiT = 0 ∀T ≥ t for each i = H,
F .

Proof. We use a proof by induction where the proposition £T has been defined
as £T := B

i
T = 0 for each i = H,F and ∀T ≥ t− 1.

By using the assumption that Bit−1 = 0 for each i, we have that £t−1 = 0. It
remains to prove that for a T > t if £T−1 is true, £T is also true. If £T−1 is true,
BiT−1 = 0 for each i. By using (10) we have that in a generic state sT ∈ ST at date
T

CHT = CWT − BHT
PT (1 +RT )

,

CFT = CWT − BFT
PT (1 +RT )

.

At date T + 1 in each state sT+1 ∈ ST+1 the optimality conditions of the repre-
sentative household i for each i = H and F are

UC(C
i
T+1(sT+1)) = (1 +RT+1)βET+1

½
UC(C

i
T+2)

PT+1
PT+2

¾
, (A.1)

{UC(CiT+s)} = ET+s
½
(1 +RT+s)βUC(C

i
T+s+1)

PT+s
PT+s+1

¾
for s > 1, (A.2)( ∞X

k=T+1

RrT+1,kC
i
k(sk)

)
=

BiT
PT+1

+

( ∞X
k=T+1

RrT+1,kC
W
k (sk)

)
, (A.3)
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where the discount factor has been defined as

RrT+1,k =
Pk

PT+1
Qk−1
s=T+1(1 +Rs)

for k > T + 1,

RrT+1,T+1 = 1.

and where (A.3) has been obtained after iterating (10) and it consists of a set of
conditions corresponding to any possible history starting from each state sT+1 ∈ ST+1
at date t + 1. If BHT = BFT the optimal allocations of consumptions of households
of region H and F are exactly the same looking ahead from period T + 1 in each
state sT+1 ∈ ST+1. Indeed, the expected discounted value of human wealth (the
expression in the curly brackets of the RHS of (A.3)) is the same across regions and is
taken as given by the households in their consumption decisions. Thus we can write
CHT+1(sT+1) and C

F
T+1(sT+1) as they were implicitly defined by the same indirect

function, which is state-dependent, of respectively BHT and BFT ,

CHT+1(sT+1) = ΓsT+1(B
H
T ),

CFT+1(sT+1) = ΓsT+1(B
F
T ),

and this is true for each sT+1 ∈ ST+1. Moreover ΓsT+1 is a non-decreasing monotone
function of the initial level of assets, BHT or BFT . From the equilibrium condition at

time T we have nBHT + (1− n)BFT = 0. If BHT > 0, it follows that CHT+1(sT+1)̇ >
CFT+1(sT+1) for each sT+1 ∈ ST+1, while CHT < CFT . But this violates the optimality
condition1

ET

("
UC(C

H
T+1)

UC(CHT )
− UC(C

F
T+1)

UC(CFT )

#
PT
PT+1

)
= 0, (A.4)

because the term in the square bracket is negative across all the states and prices are
always positive. It should be then that BHT = BFT = 0.

A corollary of this conclusion is that there is perfect risk sharing of consumption
between regions, i.e. CH = CF = CW at any time and at any state.

Appendix B
This appendix contains the proofs of some propositions of section 3.of the paper.

Proposition 1
Proof. We show here that terms of trade is independent of monetary policy when

αH = αF . In this case kHC = kFC and kHT = kFT = kT By taking the difference of
equations (22) and (21), we obtain that

πRt = −kT (bTt − eTt) + βEtπRt+1, (B.1)

where the pressure on relative inflation is given by the deviations of the terms of trade
from their natural rate. Noting that πRt = bTt − bTt−1 we obtain

Et bTt+1 − 1 + β + kT
β

bTt + 1

β
bTt−1 = −kT

β
eTt. (B.2)

1 I am grateful to Cedric Tille for pointing out this last observation
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where the stochastic difference equation (B.2) has always one eigenvalue with modulus
less than 1 and one which is bigger than 1/β. The unique and stable solution is given
by bTt = λ1 bTt−1 + λ1kTEt ∞X

s=t

µ
1

λ2

¶s−t eTs,
where λ1 is a positive eigenvalue of the second order difference equation (B.2), with
λ1 less than 1.

Proposition 2
Proof. We have that the AS equation of the region F , in the case its prices are

sticky, is

πFt = −kFT [nbTt − kFCkFT ( bCWt − eCF,t)] + βEtπFt+1, (B.3)

where we have that eCF,t ≡ η

ρ+ η
(Y

F

t − gFt ).

Under the assumption that prices in region F are flexible, we can observe that the
term of trade is implied by the term in the square brackets of (B.3), namely

nbTt = kFC
kFT
( bCWt − eCF,t). (B.4)

Similarly rearranging the AS equation of region H we obtain

πHt = k
H
T [(1− n)bTt + kHCkHT ( bCWt − eCH,t)] + βEtπHt+1, (B.5)

where we have that eCH,t ≡ η

ρ+ η
(Y

H
t − gHt ).

After plugging (B.4) into (B.5) we obtain

πHt =
kC
n
[ bCWt − n eCH,t − (1− n) eCF,t] + βEtπHt+1.

By noting that eCWt = n eCH,t+(1−n) eCF,t, we reach the conclusion that by stabilizing
the inflation rate in region H at all date t monetary authority reaches a path of
consumption consistent with its efficient level at all dates t. Moreover if bCt = eCt it
follows from (B.4) that bTt = eTt.
Proposition 3
Proof. We recall equations (21) and (22)

πHt = (1− n)kHT ( bTt − eTt) + kHC yWt + βEtπ
H
t+1, (B.6)

πFt = −nkFT (bTt − eTt) + kFCyWt + βEtπ
F
t+1. (B.7)
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By contradiction if bTT = eTT and yWT = 0 at all dates T ≥ t, we have that πRT =

πFT − πHT = 0 at all dates T ≥ t, implying that bTt = bTt−1 = 0 (given the initial

condition bTt−1 = 0 ), which contradicts bTt = eTt unless eTt = 0 and this is for each
date t.

Proposition 5
Proof. The optimal plan can be obtained by taking the first order condition of

the following Lagrangian2

E0{
P∞
t=0 β

t{Λ · [yWt ]2 + n(1− n)Γ · [bTt − eTt]2 + γ · (πHt )2 + (1− γ) · (πFt )2+
+2nφ1,t[π

H
t − (1− n)kHT (bTt − eTt)− kHC yWt − βπHt+1]+

+2(1− n)φ2,t[πFt + nkFT ( bTt − eTt)− kFCyWt − βπFt+1]
+2φ3,t[bTt − bTt−1 − πFt + πHt ]},

where n · φ1,t and (1 − n) · φ2,t are the Lagrangian multipliers associated with the
constraints (B.6) and (B.7), respectively; φ3,t is the Lagrangian multiplier associated
with the terms of trade identity3bTt = bTt−1 + πFt − πHt , (B.8)

The first-order conditions are

ΛyWt − nkHC φ1,t − (1− n)kFCφ2,t = 0, (B.9)

γπHt + n(φ1,t − φ1,t−1) + φ3,t = 0, (B.10)

(1− γ)πFt + (1− n)(φ2,t − φ2,t−1)− φ3,t = 0, (B.11)

n(1−n)Γ(bTt− eTt)−n(1−n)kHT φ1,t+n(1−n)kFT φ2,t+φ3,t−βφ3,t+1 = 0, (B.12)
obtained by minimizing the Lagrangian with respect to yWt , π

H
t , π

F
t , bTt. These

conditions hold at each date t with t ≥ 1. They also hold at time 0, given the initial
conditions on the absence of commitment at time 0

φ1,−1 = φ2,−1 = 0,

and the initial condition on bT−1 which is imposed to be equal to zero.4 The optimal
bounded plan is a set of bounded processes {yWt , πHt , πFt , bTt, φ1,t, φ2,t, φ3,t} that

2Note that we have omitted the term Ω, by normalizing the Lagrange multiplier.
We have also multiplied the Lagrange multiplier by a factor of two in order to eliminate
a recurrent factor of two from the first-order conditions.

3The constraint (19) in the text is not relevant in the optimization problem, since
there is no cost due to the volatility of the nominal interest rate in the loss function.
Given the optimal path for the sequences {yWt , bTt, πHt , πFt }+∞t=0 , the nominal interest
rate is adjusted residually following (19). Thus, it follows that the optimal allocation
of {yWt , bTt, πHt , πFt }+∞t=0 will be independent of the path of the natural rate of interest,
{ eR}+∞t=0 .

4This optimal plan is not time-consistent. Time consistency would have required
that the Lagrange multiplier were zero at all dates, but this is not feasible as a solution.
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satisfy conditions (B.6), (B.7), (B.8), (B.9), (B.10), (B.11) and (B.12), given the initial
conditions and given the process for eTt.5 Noting that each of the first-order conditions
hold at each date t, they should hold under commitment also conditional upon the
information set at each date t. We can rearrange the conditions characterizing the
optimal plan as

QEtxt+1 =Mxt + v eTt, (B.13)

where Q andM are 9×9 matrices, x0t ≡ [yWt , πHt , πFt , φ3,t, φ1,t, φ2,t, bTt−1, st, wt]
where we have defined st ≡ φ1,t−1, wt ≡ φ2,t−1, and v is a 9×1 vector. Considering
a bounded stochastic process for the shock eTt, a bounded optimal plan exist and it
is unique if and only if the matrix (Q)−1M has exactly three eigenvalues inside the
unit circle; in fact in the system of stochastic difference equations (B.13) there are
three predetermined variables. If we assume an autoregressive process for the shockeTt = φeTt−1 + εt, where εt is a white noise and 0 ≤ φ < 1, the unique bounded
solution can be written as

pt = Lzt + l eTt,
zt = Hzt−1 + heTt,eTt = φeTt−1 + εt

where p0t ≡ [yWt ,πHt ,πFt ,φ3,t] z0t ≡ [bTt, φ1,t, φ2,t], L is a 4× 4 matrix, H is a 3× 3
matrix while l and h are 4 × 1 and 3 × 1 vectors, respectively. Furthermore we can
write the solution of the terms of trade as

det[I −HL]bTt = h1 eTt + [H13h3 +H12h2 −H22h1 −H33h1]eTt−1
+[H22H33h1 −H23H32h1 −H12H33h2 +H12H23h3 +
+H13H32h2 −H13H22h3]eTt−2,

where hj are elements of the vector h, and Hij are elements of the matrix H, or more
compactly as

G(L)bTt = V (L)eTt, (B.14)

where L is the lag operator and G(L) and V (L) are polynomials in the lag opera-
tors respectively of the third order and of the second order. Furthermore it can be
shown that also yWt ,π

H
t ,π

F
t have the same representations as in (B.14) with different

polynomials but of the same orders

Appendix C

In this appendix, we derive the log-linear approximation of region H’s AS equation,
equation (21) in the text. The derivation of the region F ’s supply side follows in

5We are considering only bounded solutions, thus we can neglect the set of transver-
sality conditions.
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a specular way. Given the sequences {Ct}, the sequences of shocks and the initial
conditions, the optimal paths of prices {ept(h), PH,t} is described by the following
conditions

ept(h) = σ

(σ − 1)(1− τH)
Et
P∞
k=0(α

Hβ)kVy(eydt,t+k(h), zHt+k)eydt,t+k(h)
Et
P∞
k=0(α

Hβ)kλt+keydt,t+k(h) , (D.15)

P 1−σH,t = αHP 1−σH,t−1 + (1− αH)ept(h)1−σ, (D.16)

where eydt,t+k(h) = µ ept(h)
PH,t+k

¶−σ
[T 1−nt+k Ct+k +G

H
t+k]. (D.17)

We can write (D.15) as

0 = Et
∞X
k=0

(αHβ)k{[(1− σ)(1− τH)λt+kept(h) +
+σVy(eydt,t+k(h), zHt+k)]eydt,t+k(h)},

and after substituting the expression for λt+k

Et
∞X
k=0

(αHβ)k

("
(1− σ)(1− τH)UC(Ct+k) ept(h)Pt+k

+

+σVy(eydt,t+k(h), zHt+k)
#) eydt,t+k(h) = 0,

or

Et
∞X
k=0

(αHβ)k

("
(1− σ)(1− τH)UC(Ct+k) ept(h)

PH,t+k
Tn−1t+k +

+σVy(eydt,t+k(h), zHt+k)
# eydt,t+k(h)

)
= 0,

(D.18)
where Tt+k = PF,t+k/PH,t+k. We take a log-linear approximation of this equi-

librium condition around a steady state in which Ct = C, Tt = 1, ept(h)/PH,t = 1,
GHt = 0, z

H
t = 0 and (1− τH)UC(C) = σ

σ−1Vy(C, 0) at all times, obtaining

0 = Et
∞X
k=0

(αHβ)k{(1− σ)(1− τH)UC(C)bpt,t+k +
+(1− σ)(1− τH)UC(C)[−(1− n)bTt+k]

+(1− σ)(1− τH)UCC(C)C bCt+k + σCVyy(C, 0)[−σbpt,t+k +
+(1− n)bTt+k + bCt+k + gHt+k] + σVyz(C, 0)bzHt+k}

where bpt,t+k = ln(ept(h)/PH,t+k). We can further simplify the equation above to
0 = Et

∞X
k=0

(αHβ)k{(bpt,t+k − (1− n)bTt+k − ρ bCt+k − η[−σbpt,t+k + (1− n)bTt+k
+ bCt+k + gHt+k − Y Ht ]},
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where ρ ≡ −UCC(C)C/UC(C) and η ≡ Vyy(C, 0)C/Vy(C, 0), while we have define
Y
H
t such that Vyz(C, 0)bzHt+k ≡ −CVyy(C, 0)Y Ht . We note that

bpt,t+k = bpt,t − kX
s=1

πH,t+s

we can then simplify to

bpt,t
1− αHβ = Et

∞X
k=0

(αHβ)k[
1 + η

1 + ση
(1− n)bTt+k + ρ+ η

1 + ση
bCt+k

+
η

1 + ση
(gHt+k − Y

H

t+k)] + Et
∞X
k=0

(αHβ)k

"
kX
s=1

πH,t+s

#
. (D.19)

Log-linearizing (D.16), we obtain

bpt,t = αH

1− αH π
H
t

Thus we can simplify (D.19) further to

πHt
1− αHβ

αH

1− αH = Et
∞X
k=0

(αHβ)k[
1 + η

1 + ση
(1− n)bTt+k + ρ+ η

1 + ση
bCt+k +

+
η

1 + ση
(gHt+k − Y

H
t+k)] + Et

∞X
k=1

(αHβ)k
πHt+k
1− αβ

We obtain

πHt = (1− αHβ)1− α
H

αH
1 + η

1 + ση
(1− n)bTt + (1− αHβ)1− αH

αH
ρ+ η

1 + ση
bCt

+(1− αHβ)1− α
H

αH
η

1 + ση
(gt − Y t) + βEtπHt+1 (D.20)

noting that the natural rate of world consumption and of the terms of trade, which
will arise when prices are flexible, are defined as

eCt ≡ η

ρ+ η
(Y

W
t − gWt ),

eTt ≡ η

1 + η
(gRt − Y

R
t ).

we can simplify the equation above to

πHt = (1− n)kHT ( bTt − eTt) + kHC ( bCt − eCt) + βEtπHt+1, (D.21)
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which corresponds to equation (21) in the text (note that bCt = bCWt ) where

kHT ≡ (1− αHβ)1− α
H

αH
1 + η

1 + ση

kHC ≡ (1− αHβ)1− α
H

αH
ρ+ η

1 + ση
.
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Appendix D

In this appendix we derive the utility-based loss function, equation (26) in the text.
We follow Rotemberg and Woodford (1997,1998) and Woodford (1999a). The average
utility flow among all the households belonging to region H is

wHt = U(Ct)−
R n
0 v(yt(h), z

H
t )dh

n
, (E.1)

while that of region F is

wFt = U(Ct)−
R 1
1−n v(yt(f), z

F
t )df

1− n . (E.2)

The welfare criterion of the Central Bank in the currency area is the discounted value
of a weighted average of the average utility flows of the regions,

W = E0
∞X
j=0

βj(nwHt+j + (1− n)wFt+j). (E.3)

We take a Taylor expansion of each term of the utility function. Taking a second-
order linear expansion of U(Ct) around the steady state value C defined by equation
(A.22), we obtain

U(Ct) = U(C) + UC(Ct −C) + 1
2
UCC(Ct −C)2 + o(kξk3), (E.4)

where in o(kξk3) we group all the terms that are of third or higher order in the devi-
ations of the various variables from their steady-state values. Furthermore expanding
Ct with a second-order Taylor approximation we obtain

Ct = C(1 + bCt + 1
2
bC2t ) + o(kξk3), (E.5)

where bCt = ln(Ct/C). Substituting (E.5) into (E.4) we obtain
U(Ct) = UCC bCt + 1

2
(UCC + UCCC

2
) bC2t + t.i.p.+ o(kξk3), (E.6)

which can be written as

U(Ct) = UCC[ bCt + 1
2
(1− ρ) bC2t ] + t.i.p.+ o(kξk3),

where we have defined ρ ≡ −UCCC/UC and where in t.i.p. we include all the terms
that are independent of monetary policy. Similarly we take a second-order Taylor

expansion of v(yt(h), z
H
t ) around a steady state where yt(h) = Y

H
for each h, and

at each date t, and where zHt = 0 at each date t. We obtain
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v(yt(h), z
H
t ) = v(Y

H
, 0) + vy(yt(h)− Y H) + vzzHt +

1

2
vyy(yt(h)− Y H)2

+vyz(yt(h)− Y H)zHt +
1

2
vzz(z

H
t )

2 + o(kξk3), (E.7)

where byt(h) =ln(yt(h)/Y H). Here we recall that
y(h) =

µ
p(h)

PH

¶−σ h
(T )1−nCW +GH

i
,

which can be rewritten as
y(h) = yd(h) + yg(h),

where we have defined

yd(h) ≡
µ
p(h)

PH

¶−σ
(T )1−nCW ,

yg(h) ≡
µ
p(h)

PH

¶−σ
GH .

Here we take a second order Taylor expansion of ydt (h) and y
g
t (h) obtaining

ydt (h) = Y
H · (1 + bydt (h) + 12 · [bydt (h)]2) + o(kξk3),

ygt (h) = Y
H · (bygt (h) + 12 · [bygt (h)]2) + o(kξk3).

We note that ygt (h) can be neglected because in its expansion, the term of order less
than o(kξk3) are independent of monetary policy, being the shock GH equal to zero
in the steady state. We can simplify (E.7) to

v(yt(h), z
H
t ) = vyY

H · [bydt (h) + 12 · bydt (h)2 + η2 · byt(h)2
−η · byt(h)Y Ht ] + t.i.p.+ o(kξk3), (E.8)

where Y
H
t has been defined by the relation vyzz

H
t ≡ −vyyY HY Ht and we have that

η ≡ Vyy(Y
H
, 0)Y

H
/Vy(Y

H
, 0). Our steady state with zero inflation implies the

following conditions, respectively for region H

(1− τH)UC(C) = σ

σ − 1T
1−n

Vy
³
T
1−n

C, 0
´
, (E.9)

and for region F

(1− τF )UC(C) = σ

σ − 1T
−n
Vy

³
T
−n
C, 0

´
, (E.10)
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which can be rewritten as

(1−ΦH)UC(C) = T 1−nVy
³
T
1−n

C, 0
´
, (E.11)

(1−ΦF )UC(C) = T−nVy
³
T
−n
C, 0

´
, (E.12)

after having defined

(1−ΦH) ≡ (1− τH)σ − 1
σ

,

(1−ΦF ) ≡ (1− τF )σ − 1
σ

.

In the efficient equilibrium, we have that ΦH = ΦF = 0. As outlined in Woodford
(1999a), we have to restrict our attention on steady state in which the deviations of
ΦH and ΦF are of order at least o(kξk). We also restrict the analysis to the case in
which ΦH = ΦF . In this case we have that Y

H
= Y

F
= C. In the neighbor of the

efficient level of production and consumption we can write the steady state term of
trade and consumption, by using conditions (E.11) and (E.12), as

T = 1,

lnC/C∗ = −nΦ
H + (1− n)ΦF
ρ+ η

, (E.13)

where C∗ is the efficient level of consumption. By using (E.11) we can write (E.8) as

v(yt(h), z
H
t ) = UCC · [(1−Φ) · bydt (h) + 12 · bydt (h)2 + η2 · byt(h)2

−η · byt(h)Y Ht ] + t.i.p.+ o(kξk3). (E.14)

Here we integrate (E.14) across the households belonging to region H, obtainingR n
0 v(yt(h), z

H
t )dh

n
= UCC · {(1− Φ) · Ehbydt (h) + 12 · [varhbydt (h) + [Ehbydt (h)]2]

+
η

2
· [varhbyt(h) + [Ehbyt(h)]2]− ηEhbyt(h)Y Ht }

+t.i.p.+ o(kξk3). (E.15)

Using the aggregator (??) we can write

YH,t = Y
d
H,t + Y

g
H,t,

where

Y dH,t = T 1−nt CWt ,

Y gH,t = GH .
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We take a second-order approximation of the aggregators obtaining

bYH,t = Ehbyt(h) + 1
2

µ
σ − 1
σ

¶
varhbyt(h) + o(kξk3),

bY dH,t = Ehbydt (h) + 12
µ
σ − 1
σ

¶
varhbydt (h) + o(kξk3). (E.16)

Finally substituting (E.16) into (E.15) we obtainR n
0 v(yt(h), zt)

n
= UCC · [(1−ΦH) · bY dH,t + 12 · [bY dH,t]2 + η2 · [bYH,t]2

+
1

2
(σ−1 + η) · varhbyt(h)− ηbY dH,tY Ht ]

+t.i.p.+ o(kξk3) (E.17)

where we have used the fact that varhbyt(h) =varhbydt (h).
Combining (E.17) and (E.6) into (E.1), we obtain

wHt = UCC[ bCt + 1
2
(1− ρ) bC2t − (1−ΦH) · bY dH,t − 12 · [bY dH,t]2 − η2 · [bYH,t]2

−1
2
(σ−1 + η) · varhbyt(h) + ηbY dH,tY Ht ]

+t.i.p.+ o(kξk3), (E.18)

while for region F we have

wFt = UCC[ bCt + 1
2
(1− ρ) bC2t − (1−ΦF ) · bY dF,t − 12 · [bY dF,t]2 − η2 · [bYF,t]2

−1
2
(σ−1 + η) · varfbyt(f) + ηbY dF,tY Ft ]

+t.i.p.+ o(kξk3)̇. (E.19)

Taking a linear combination of (E.18) and (E.19) with weight n, we obtain

wt = UCC{ bCt · [nΦH + (1− n)ΦF ] + 1
2
(1− ρ) bC2t

−1
2
· [n(bY dH,t)2 + (1− n)(bY dF,t)2]− 12η · [nbY 2H,t + (1− n)bY 2F,t]

+η · [nbYH,tY Ht + (1− n)bYF,tY Ft ] +
−1
2
(σ−1 + η) · [nvarhbyt(h) + (1− n)varf byt(f)]}

+t.i.p.+ o(kξk3), (E.20)
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and after substituting the expressions for bYH,t, bYF,t, bY dH,t, bY dF,t we get
wt = UCC{ bCt · [nΦH + (1− n)ΦF ] + 1

2
(1− ρ) bC2t

+η[ bCtYWt + n(1− n)bTtY Rt ]− 12 [ bC2t + n(1− n)bT 2t ]
−1
2
η · [ bC2t + n(1− n)bT 2t + 2 bCtgWt − 2n(1− n)bTtgRt ]

−1
2
(σ−1 + η) · [nvarhbyt(h) + (1− n)varf byt(f)]}

+t.i.p.+ o(kξk3), (E.21)

which can be written as

wt = −UCC{− bCt · [nΦH + (1− n)ΦF ]
+
1

2
(ρ+ η)[ bCt − eCt]2 + 1

2
(1 + η)n(1− n)[bTt − eTt]2

+
1

2
(σ−1 + η) · [nvarhbyt(h) + (1− n)varf byt(f)]}

+t.i.p.+ o(kξk3). (E.22)

Where the natural rate of world consumption and of the term of trade, which will
arise when prices are flexible, are defined as

eCWt ≡ η

ρ+ η
(Y

W
t − gWt ),

eTt ≡ η

1 + η
(gRt − Y

R
t ).

By using equations (E.13) and after having defined cWt ≡ bCWt − eCt we obtain
wt = −UCC{1

2
(ρ+ η)[cWt − cW ]2 + 1

2
(1 + η)n(1− n)[bTt − eTt]2

+
1

2
(σ−1 + η) · [nvarhbyt(h) + (1− n)varfbyt(f)]}

+t.i.p.+ o(kξk3), (E.23)

where cW ≡ −lnC/C∗.
Here we derive varhbyt(h) and varfbyt(f). We have that

varh{logyt(h)} = σ2varh{logpt(h)}.
Defining pt ≡Ehlogpt(h), we have
varh{logpt(h)} = varh{logpt(h)− pt−1} = Eh{[logpt(h)− pt−1]2}− (∆pt)2

= αHEh{[logpt−1(h)− pt−1]2}+ (1− αH)[logept(h)− pt−1]2 +
−(∆pt)2

= αHvarh{logpt−1(h)}+ (1− αH)[logept(h)− pt−1]2 − (∆pt)2.
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We have also that

pt − pt−1 = (1− αH)[logept(h)− pt−1], (E.24)

from which we obtain that

varh{logpt(h)} = αHvarh{logpt−1(h)}+ αH

1− αH (∆pt)
2.

But
pt = logPH,t + o(kξk2),

which implies

varh{logpt(h)} = αHvarh{logpt−1(h)}+ αH

1− αH (π
H
t )

2 + o(kξk3),

after integration of the above equation we obtain

varh{logpt(h)} = (αH)t+1varh{logp−1(h)}+
tX

s=0

(αH)t−s
αH

1− αH (π
H
t )

2+o(kξk3)

where we note that the first term in the right hand side is independent of the policy
chosen after period t ≥ 0. After taking the discounted value, with the discount factor
β, we obtain

∞X
t=0

βtvarh{logpt(h)} = αH

(1− αH)(1− αHβ)
∞X
t=0

βt(πHt )
2 + t.i.p.+o(kξk3)

The same derivations apply also for the Foreign country. We define

dH ≡ αH

(1− αH)(1− αHβ) ,

dF ≡ αF

(1− αF )(1− αFβ) .

We can simplify (E.3) to

Wt = −Ω
∞X
j=0

βjLt+j (E.25)

where

Lt+j = Λ[c
W
t+j−cW ]2+n(1−n)Γ[bTt+j−eTt+j ]2+γ(πHt+j)2+(1−γ)(πFt+j)2+t.i.p.+o(kξk3),

which corresponds to equation (26) in the text, where cW = yW and yW ≡ cW .
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Furthermore

Ω ≡ 1

2
UCC(nd

H + (1− n)dF )σ(1 + ση)

Λ ≡ kHC k
F
C

σ

1

nkFC + (1− n)kHC
,

Γ ≡ kHT k
F
T

σ

1

nkFT + (1− n)kHT
,

γ ≡ ndH

ndH + (1− n)dF .

We note that when the degrees of rigidity are the same, i.e dH = dF , γ coincides with
n.
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Appendix E

In this appendix we sketch the main characteristic of the K-region extension. The
whole economy is populated by a continuum of agents on the interval [0, 1]. Each
agent is both consumer and producer. Consumer of all the goods produced within the
economy, producer of a single differentiated product. In each sector a measure ni of
goods is produced, with i = 1, 2, ...,K. We have that

PK
i=1 ni = 1. Preferences of

the generic household j are given by

U jt = Et
∞X
s=t

βs−t
·
U(Cjs) + L

µ
Mj
s

Ps
, ξi
¶
− V (yjs, zis)

¸
,

where everything has the same interpretation as in the model of the main text, except
that Cj is defined as

Cj ≡
QK
i=1(C

j
i )
niQK

i=1 ni

and Cji is an index of goods produced in region i. Specifically,

Cji ≡
"µ

1

ni

¶ 1
σ
Z
u∈i
cj(u)

σ−1
σ du

# σ
σ−1

.

for i = 1, 2, ...,K. In this case we can write total demand of good h produced in
region k as

ydk(h) =

µ
p(h)

Pk

¶−σ
[(PRk )

−1CW +Gk]

where the union aggregate consumption CW is defined as

CW ≡
Z 1

0

Cjdj,

and the relative price of region k with respect to the overall price index has been
defined as PRk ≡ Pk/P for k = 1, 2, ...,K. The supply side of the model is the same
except that we have to deal with K regions.

Here we note that Lemma 1 can be extended to this general context by observing
that the first order conditions are the same as in the previous case as well as the
aggregate budget constraint of each region.

In the log-linear approximation we use the following notation. Given a generic
variable X, a world variable XW is defined as the weighted average of the region’s
variables with weights ni

XW ≡
KX
i=1

niXi,

while a relative variable XR
i is defined as

XR
i ≡ Xi −XW
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while XR
i,j as

XR
i,j ≡ Xi −Xj .

The flexible-price solution is

eCWt =
η

ρ+ η
(Y

W
t − gWt ),

eYWt =
η

ρ+ η
Y
W
t +

ρ

ρ+ η
gWt ,

ePRi,t =
η

1 + η
(gRi,t − Y

R
i,t).

Here we discuss how the log-linear approximation of the equilibrium will behave
under the hypothesis of sticky prices. We obtain the log-linear version of the Euler
equation and of aggregate outputs as

Et bCWt+1 = bCWt + ρ−1( bRt −EtπWt+1),bYi,t = − bPRi,t + bCWt + git,

for each i = 1, 2, ...K. Our set of AS equations will be

πit = −kiT ( bPRi,t − ePRi,t) + kiC( bCWt − eCWt ) + βEtπit+1, for i = 1, 2...K

Furthermore the definitions of relative price imply

PRi,t = bPRi,t−1 + πit − πWt , for i = 1, 2...K

The welfare criterion of the Central Bank is again the discounted value of a weighted
average of the average utility flows of all the households,

W = E0
∞X
j=0

KX
i=1

βjniw
i
t+j .

In this case we obtain

wit = UCC[ bCit + 12(1− ρ)( bCit)2 − (1− Φ) · bY di,t − 12 · [bY di,t]2 − η2 · [bYi,t]2
−1
2
(σ−1 + η) · varhbyi,t(h) + ηbY di,tY it] + t.i.p.+ o(kξk3). (F.1)

Taking a linear combination of (F.1) with weights ni, we have

wt = UCC{ bCWt · [Φ] + 1
2
(1− ρ)( bCWt )2

−1
2
· [

KX
i=1

ni(bY di,t)2]− 12η · [
KX
i=1

ni(bYi,t)2]
+η · [

KX
i=1

ni bYi,tY it]− 12(σ−1 + η) · [
KX
i=1

nivarhbyi,t(h)]}
+t.i.p.+ o(kξk3),
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Noting that

KX
i=1

ni(bY di,t)2 = ( bCWt )2 + KX
i=1

ni( bPRi,t)2,
KX
i=1

ni(bYi,t)2 = ( bCWt )2 + KX
i=1

ni( bPRi,t)2 − 2 KX
i=1

ni bPRi,tgi,t + 2 bCWt gWt ,
KX
i=1

ni bYi,tY it = bCWt YWt −
KX
i=1

ni bPRi,tY it,
KX
i=1

ni bPRi,t = 0,

we obtain

wt = −UCC{1
2
(ρ+ η)[cWt − cW ]2 + 1

2
(1 + η)[

KX
i=1

ni( bPRi,t − ePRi,t)2] +
+
1

2
(σ−1 + η) · [

KX
i=1

nivarhbyi,t(h)]}+ t.i.p.+ o(kξk3), (F.2)

where cW ≡ −lnC/C∗.
Moreover we have that

∞X
t=0

βtvarhbyi,t(h) = σ2 αi

(1− αi)(1− αiβ)
∞X
t=0

βt(πit)
2 + t.i.p.+ o(kξk3).

Defining

di ≡ αi

(1− αi)(1− αiβ) ,

we can simplify the welfare function to

Wt = −Ω
∞X
j=0

βjLt+j (F.3)

where

Lt+j = Λ[c
W
t+j − cW ]2 + Γ[

KX
i=1

ni( bPRi,t − ePRi,t)2] + KX
i=1

γi(π
i
t+j)

2 + t.i.p.+ o(kξk3),
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and

Ω ≡ 1

2
UCC(

KX
i=1

nid
i)σ(1 + ση)

Λ ≡ 1

σ

Ã
KX
i=1

ni(k
i
C)
−1
!−1

Γ ≡ 1

σ

Ã
KX
i=1

ni(k
i
T )
−1
!−1

,

γi ≡ nid
i

(
PK
i=1 nid

i)
.

We note that when the degrees of rigidity are the same, γi coincides with ni.
Given this structure, some generalizations of the results of the main text follow

directly. Efficiency can be obtained only if K − 1 regions have flexible prices. In
this case monetary policy should target the inflation rate in the sticky price region.
If all the regions have the same degree of nominal rigidity, then the optimal policy is
to target to zero πWt . If we restrict the attention to the inflation targeting class of
policies, regions with equal degree of nominal rigidity should have the same weight.
For example, if only one sector has flexible prices, and the others have identical degree
of nominal rigidity, then it is optimal to target a weighted average of the sticky-price
inflations with equal weights.
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