
Supplementary Appendix1 to:
“Linear-Quadratic Approximation of Optimal Policy Problems”

by Pierpaolo Benigno and Michael Woodford

This appendix provides further details on the solution method that can be
helpful to facilitate its implementation.

Solution to the first-order conditions

The first-order conditions, which are discussed in section 3 of the paper, are
given by

1

2
Et{[A(L)+A0(βL−1)]ỹt+Et[B(L)ξt+1]+Et[C0(βL−1)λ̃t]+β−1D0(βL−1)ϕ̃t−1 = 0,

(1)
EtD(L)ỹt+1 = D2ξt, (2)

C(L)ỹt = C2ξt, (3)

which have to be solved for the joint evolution of the processes {ỹt, λ̃t, ϕ̃t} given
the exogenous disturbance processes {ξt} and the initial conditions ỹt0−1 and
ϕ̃t0−1. Let assume that the exogenous disturbance processes follow

ξt = Θξt−1 + Λ²t, (4)

where ²t has zero mean and variance-covariance matrix given by the identity
matrix. These first-order conditions can be written as

β

2
A1Etỹt+1 + (B0Θ+B1)ξt + βC01Etλ̃t+1 +D

0
1ϕ̃t

= −1
2
(A0 +A

0
0)ỹt −

1

2
A1ỹt−1 − C 00λ̃t − β−1D0

0ϕ̃t−1 −B2ξt−1, (5)

D0Etỹt+1 = −D1ỹt +D2ξt, (6)

C0ỹt = −C1ỹt−1 + C2ξt, (7)

where we have defined
A0 ≡ Q
A1 ≡ 2R

B0 ≡ βλ̄kD
2
y̌ξF

k

B1 ≡ (λ̄kD2
yξF

k + ϕ̄iD
2
yξg

i +D2
yξπ)

B2 ≡ β−1ϕ̄iD
2
ŷξg

i

C0 ≡ DyF
C1 ≡ Dy̌F

1We are grateful to Vasco Curdia for helpful comments.
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C2 ≡ −DξF

D0 ≡ Dŷg
D1 ≡ Dyg
D2 ≡ −Dξg

for matrices and notation detailed in section 2.2 of the paper. First-order con-
ditions (5) to (7) together with the processes (4) can be written in a system of
the form

G0Etut+1 = G1ut +G2ξt +G3ξt−1 (8)

where the vector ut is defined as

ut ≡
∙

zt
zt−1

¸
and zt is defined as

zt ≡

⎡⎣ λ̃t
ỹt
ϕ̃t

⎤⎦
The matrices are given by

G0 ≡

⎡⎢⎢⎢⎢⎢⎢⎣
βC 01

β
2A1 0 C00

1
2(A0 +A

0
0) D0

1

0 D0 0 0 D1 0
0 0 0 0 C0 0
0 0 0 I 0 0
0 0 0 0 I 0
0 0 0 0 0 I

⎤⎥⎥⎥⎥⎥⎥⎦ ,

G1 ≡

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 −12A1 −β−1D0

0

0 0 0 0 0 0
0 0 0 0 −C1 0
I 0 0 0 0 0
0 I 0 0 0 0
0 0 I 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

G2 ≡

⎡⎢⎢⎢⎢⎢⎢⎣
−(B0Θ+B1)

D2
C2
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ ,

G2 ≡

⎡⎢⎢⎢⎢⎢⎢⎣
−B2
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ .
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The characteristic polynomial of the system (8) is given by

det[μG0 −G1] = 0

and the above system is determined if there are n (where n is the dimension
of the vector z) roots within the unit circle. Let us call Ge the matrices of left
eigenvectors associated with the unstable eigenvalues that satisfies

ΩeGeG1 = GeG0,

where Ωe is a triangular stable matrix of dimension n. We can then pre-multiply
(8) with the product of matrices ΩeGe and obtain

ΩeEtūt+1 = ūt +ΩeGeG2ξt +ΩeGeG3ξt−1,

where we have defined ūt ≡ Gsut where Gs ≡ GeG0. This equation has a stable
solution of the form

ūt = −ΩeEt

(
+∞X
T=t

Ωe
(T−t)(GeG2 +ΩeGeG3)ξT

)
− ΩeGeG3ξt−1. (9)

We can partition Gs as Gs = [Ga Gb] where Ga and Gb are square matrices of
dimension n. Using this partition, the definition of ūt and (4) it follows that

zt = Ψ̄0zt−1 + Ψ̄1ξt + Ψ̄2ξt−1 (10)

where
Ψ̄0 = −G−1a Gb

Ψ̄1 = −G−1a ΩeŪ
Ψ̄2 = −G−1a ΩeGeG3

In particular Ū solves

Ū = (GeG2 +ΩeGeG3) +ΩeŪΘ

which implies in a closed-form solution that

vec(Ū) = [I − (Θ0 ⊗ Ωe)]−1vec[GeG2 +ΩeGeG3].

Since λ̃t−1 does not enter the first-order conditions then Ψ̄0 is triangular in way
that it is possible to extract from (10) the law of motion∙

ỹt
ϕ̃t

¸
= T̃

∙
ỹt−1
ϕ̃t−1

¸
+Ψ1ξt +Ψ2ξt−1

for selected matrices T̃ , Ψ1 and Ψ2.This allows to write the evolution of the
state vector

yt ≡

⎡⎣ ỹt
ϕ̃t
ξt

⎤⎦
3



as in the appendix of the paper. Indeed, we have

yt = Σyt−1 + Ξ²t

where

Σ ≡
∙
T̃ Ψ0Θ+Ψ1
0 Θ

¸
Ξ ≡

∙
Ψ1Λ
Λ

¸

Second-order conditions

The second-order conditions are based on matrices given in Lemma 2 of the
paper. In particular the matrix T can be obtained from T̃ computed above as
T = β

1
2 T̃ . The matrix J is implicitly defined by

J = T 0[S0(A0 +A
0
0)S + β1/2T 0S0A1S + β1/2S0A01ST ]T + T

0JT

and can be obtained by solving

vec(J) = [I−(T 0⊗T 0)]−1vec(T 0[S0(A0+A00)S+β1/2T 0S0A1S+β1/2S0A01ST ]T ).

Evaluation of alternative policy rules

To evaluate alternative policy rules, it is useful to add constraints that are
not binding in the optimal policy problem, since the evolution of additional
endogenous variables might be needed for the purpose of evaluating alternative
policy rules.
Under optimal policy, we have shown that the state vector evolves according

to
yt = Σyt−1 + Ξ²t. (11)

However it might be possible that additional lags of ỹt and ξt are needed because
they are part of the state vector implied by the alternative policy rules. So the
vector yt should be appropriately extended and matrices Σ and Ξ modified
appropriately. Once the definitions of yt agree between the optimal policy and
the alternative regime we can write the evolution of the state vector in the latter
case as

yt = Σ
ryt−1 + Ξ

r²t, (12)

for appropriate matrices Σr and Ξr.
First, we are interested in the decomposition of the state vector into a cyclical

and trend component. Let assume generically that the state vector of dimen-
sion k is non-stationary, but difference stationary. Assume that there are p
cointegrating vectors, with p ≤ k. It follows that we can write

∆yt = Υyt−1 + Ξ²t,
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where Υ ≡ Σ−I which can be decomposed as Υ = ΥαΥ0β where Υα and Υβ are
both k × p matrices and in particular Υ0βyt = ct where ct is the cointegrating
vector of dimension p. Note that we can write

∆yt = Υαct−1 + Ξ²t (13)

and
ct = (I +Υ

0
βΥα)ct−1 +Υ

0
βΞ². (14)

Since there is no drift, we can define the trend component as

yt
tr = lim

T−→∞
EtyT = yt +Et

∞X
j=1

∆yt+j

It follows that

yt
cyc = −Et

∞X
j=1

∆yt+j .

Using (13) and (14) we can write

yt
cyc =Υα(Υ

0
βΥα)

−1ct,

while the trend component can be written as

yt
tr = (I−Υα(Υ0βΥα)−1Υ0β)yt

where P , defined in the appendix of the paper, is given by

P ≡ I −Υα(Υ0βΥα)−1Υ0β .

Let us define Υc ≡ Υα(Υ0βΥα)−1 we can then write

yt
cyc =Υcct.

The variance-covariance matrix of the cyclical component then solves

V = ΥcVcΥ
0
c

where
Vc = ΛcVcΛ

0
c +Υ

0
βΞΞ

0Υβ

and we have defined Λc = (I+Υ0βΥα). Note that this has a closed-form solution
of the form

vec(Vc) = [I − (Λc ⊗ Λc)]−1{vecΥ0βΞΞ0Υβ}.
Note also that

yt
cyc =Υα(Υ

0
βΥα)

−1Υ0βyt = (I − P )yt
from which it follows that

yt
cyc =Σyt−1

cyc + (I − P )Ξ²t,
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where Σ is the same matrix as in (11). The above decomposition applies also to
the vector yt following the law of motion (12). However matrices, cointegrating
vectors and number of cointegrating vectors are not necessarily the same.
Note that both under optimal policy and under alternative regimes we have

ỹt = Syyt

ϕ̃t = Sϕyt

ξt = Sξyt

where Sy, Sϕ and Sξ are selection matrices that select the appropriate parts of
the state vector.
The objective of interest for the evaluation of alternative policy rules is

equation (4.2) in the paper

Wt0 =
1

2
Et0

∞X
t=t0

βt−t0
£
ỹ0tA0 · ỹt + ỹ0tA1 · ỹt−1 + 2ỹ0t[B0Θ+B1] · ξt + 2ỹ0tB2 · ξt−1

¤
+

+β−1ϕ̃0t0−1D0 · ỹt0

that can be written as

Wt0 =
1

2
Et0

∞X
t=t0

βt−t0tr{[S0yA0Sy + 2S0y(B0Θ+B1)Sξ] · yty0t}+ tr{[S0yA1Sy + 2S0yB2Sξ] · yt−1y0t}+

+β−1tr{S0ϕD0Sy · yt0y0t0−1}.

As discussed in the main text we are interested in evaluating EμEt0−1Wt0 where
Eμ is the expectation computed using the invariant distribution of ytcyc under
the optimal policy. Note that we can write

yt = ȳt
tr + ȳt

cyc + y†t

where ȳttr ≡ Et0−1yttr and ȳtcyc ≡ Et0−1ytcyc and y
†
t = yt − Et0−1yt. More-

over
ȳt
tr =Σrȳt−1

tr, (15)

ȳt
cyc =Σrȳt−1

cyc, (16)

y†t = Σ
ry†t−1 + Ξ

r²t. (17)

We define the object

P(yt0−1) = (1− β)Et0−1

∞X
t=t0

βt−t0yt−1y
0
t−1.

Given (17) we note that

Et0−1P(y
†
t0) = Ξ

rΞr0 + βΣr{Et0−1P(y
†
t0)}Σ

r0
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and then
vec[Et0−1P(y

†
t0)] = [I − (βΣ

r ⊗ Σr)]−1vec[ΞrΞr0].
Note that

P(ȳt0−1cyc) = (1− β)Et0−1

∞X
t=t0

βt−t0 ȳt−1
cycȳ0t−1

cyc.

Given (16) we obtain

EμP(ȳt0−1cyc) = (1− β)Eμ{yt0−1cycy0t0−1
cyc}+ βΣr[EμP(ȳt0−1cyc)]Σr0

and in a closed-form solution

vec[EμP(ȳt0−1cyc)] = [I − (βΣr ⊗ Σr)]−1vec[(1− β)V],

since Eμ is taken across the stationary distribution of the cyclical component
implied by the optimal policy.
Note that the object

P(yt0) = (1− β)Et0

∞X
t=t0

βt−t0yty
0
t

is such that

EμEt0−1P(yt0) = ΣrP(ȳt0−1tr)Σr0 +Et0−1P(y
†
t0) +Σ

r[EμP(ȳt0−1cyc)]Σr0

where P(ȳt0−1tr) is independent of policy since both the optimal policy and
the alternative rules have the same decomposition between trend and cyclical
component at time t0−1. (as it is discussed in section 4 of the paper) Moreover
defining

F(yt0) = (1− β)Et0

∞X
t=t0

βt−t0yt−1y
0
t,

we note that

EμEt0−1F(yt0) = P(ȳt0−1tr)Σr0 + β[Et0−1P(y
†
t0)]Σ

r0 + [EμP(ȳt0−1cyc)]Σr0.

Finally

EμEt0−1{yt0y0t0−1} = Σr{ȳt0−1trȳ0t0−1
tr}+ΣrEμ{yt0−1cycy0t0−1

cyc}
= Σr{ȳt0−1trȳ0t0−1

tr}+ΣrV.

We can then evaluate the welfare obtaining

EμW̄ =
1

2(1− β)
tr{[S0yA0Sy + 2S0y(B0Θ+B1)Sξ] · [Et0−1P(y

†
t0) +Σ

r(EμP(ȳt0−1cyc))Σr0]}

+
1

2(1− β)
tr{[S0yA1Sy + 2S0yB2Sξ] · [β(Et0−1P(y

†
t0))Σ

r0 + (EμP(ȳt0−1cyc))Σr0]}+

+β−1tr{S0ϕD0Sy · ΣrV}+W̄ (ȳt0−1tr),

where W̄ (ȳt0−1
tr) is independent of policy as discussed in section 4 of the paper.
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