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Abstract

This paper proposes a new framework for monetary policy that introduces a novel transmis-

sion mechanism based on a liquidity channel. In our framework, liquidity conditions influence

aggregate demand, giving central banks an additional tool of control through balance sheet

operations. This mechanism has broad implications. First, balance sheet policies are effective

tools for managing aggregate demand even outside the zero lower bound. Second, the size of

the central bank balance sheet—and the optimal supply of liquidity—is not solely dictated by

private sector reserve demand, but reflects broader fiscal and liquidity management objectives.

Finally, in response to a shock that pushes the economy into a liquidity trap, optimal policy

calls for an expansion of reserves after hitting the lower bound, with quantitative tightening

beginning prior to the interest rate liftoff, and both policies normalizing simultaneously. These

findings offer new foundations for understanding the role of central bank balance sheets in

macroeconomic stabilization.
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1 Introduction

The global financial crisis of 2008-09 and the recent pandemic shock led major central banks to lower

their official policy rates to historically low levels, adopting unconventional monetary policies such

as quantitative easing (QE). Quantitative easing consisted in large-scale purchases of government

debt and, in some cases, private-sector financial assets to provide monetary accommodation and

achieve policy objectives. These operations were financed by issuing bank reserves, resulting in a

significant expansion of both central bank assets and liabilities.

As economies recovered and inflationary pressures increased, central banks began normalizing

monetary policy by gradually scaling back accommodation. The initial step in this process was ta-

pering, or reducing the pace of asset purchases. This was followed by a combination of interest rate

hikes and quantitative tightening (QT), which involved reducing the size of central bank balance

sheets. However, the approach to QT has varied across jurisdictions, influenced by institutional

differences and strategic decisions regarding the timing, pace, and sequence of policy actions.

As central banks navigate the path of policy normalization, few critical questions arise: How

should the balance between interest rate management and balance sheet adjustments be designed?

What determines the optimal size of central bank balance sheets and the appropriate supply of

liquidity in the economy? Are reserves being adjusted in a way that supports monetary policy

effectiveness? Understanding these issues is essential, as central banks recalibrate their policies to

meet their objectives.

These questions call for a reassessment of the traditional framework used in monetary policy

analysis. In the Neo-Wicksellian model (see Gaĺı, 2008, and Woodford, 2003), central banks

have full control over inflation and output through adjustments in the policy rate. Within this

framework, reserves play no meaningful role, and the size of central bank balance sheets is irrelevant.

Once the policy rate is set, it is a sufficient tool to manage aggregate demand, influence prices,

and steer economic activity.

This perspective relies on a crucial assumption: the policy rate directly corresponds to the

nominal interest rate that consumers and firms face when making consumption and saving deci-

sions.

To address the policy questions raised above, we develop a new framework for monetary policy

analysis that introduces a liquidity channel as a central component of the monetary transmission

mechanism. This framework departs from the standard approach by explicitly incorporating the

role of the central bank balance sheet as an active policy instruments alongside the interest rate

on reserves. While the traditional model is encompassed as a special case, our framework offers a

novel perspective on how nominal interest rates interact with balance-sheet policies. In particular,

the policy rate no longer directly maps to the nominal interest rate faced by households in their

consumption and saving decisions. Instead, household behavior is influenced by liquidity conditions

shaped by central bank actions—a mechanism we term the liquidity channel. This distinction has

important implications for how inflation and output are managed, and for how central banks design
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the combination of interest rate and balance sheet tools.

To capture the key features of recent central bank policies, our framework incorporates two

essential components: 1) An explicit role for the banking system, as the sole holder of government

securities (including central bank reserves) backing deposits; 2) The role of deposits as assets that

provide liquidity services to households.

We begin by examining why, in this environment, the policy rate set by the central bank does

not necessarily coincide with the interest rate that matters for household consumption and saving

decisions. The distinction arises from the structure of financial intermediation: in our framework,

only banks hold central bank reserves and treasury bills, which they use to back household deposits.

These deposits serve as the primary liquid asset available to households and therefore carry a

liquidity premium.

The interest rate on deposits is influenced by the interest rate on reserves set by the central

bank. However, because deposits provide liquidity services, their return includes a premium that

is not present in other, less liquid assets held by households. It is the return on these illiquid

assets—not deposits—that influences intertemporal consumption and saving decisions and thus

aggregate demand. As a result, the interest rate relevant for aggregate demand is linked to the

policy rate only indirectly, through its effect on the deposit rate and the liquidity premium.

This disconnect gives rise to a novel transmission mechanism – the liquidity channel – through

which monetary policy operates. Through the banking sector, equilibrium in the supply of gov-

ernment and private liquidity generates a multiplier effect from government liquidity to private

liquidity (i.e., deposits). Crucially, the size of this multiplier depends on the degree of pledgeabil-

ity of private assets as additional collateral for deposits.

By adjusting the quantity of reserves, central banks can influence the liquidity premium through

this multiplier effect on deposits. This, in turn, affects the interest rate on illiquid securities, thereby

providing an additional instrument for influencing aggregate demand beyond the conventional

policy rate.

An important implication of this framework is that fiscal policy also plays a role in shaping

liquidity conditions. Since government bonds serve as collateral backing deposits, the issuance

of liquid debt by the fiscal authority affects the liquidity premium. In this way, both monetary

and fiscal policy jointly determine inflation and output—marking a departure from conventional

frameworks that view monetary policy as the primary driver of macroeconomic outcomes.

The standard Neo-Wicksellian framework is nested within our model as a special case. This

occurs when government debt provides no non-pecuniary benefits—either to banks or directly to

households—or when liquidity conditions are such that agents derive no marginal benefit from

holding liquid assets, i.e liquidity is fully satiated.

Our framework introduces a novel aggregate demand equation that extends the standard New-

Keynesian model by explicitly incorporating the role of central bank reserves and the supply of

public liquidity. Unlike conventional models, where output depends solely on current and expected

future real interest rates, our analysis shows that aggregate demand is also influenced by the supply
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of liquidity in the economy, which is determined by the combined actions of the central bank and

the fiscal authority. An increase in liquidity reduces liquidity premia, making it less costly for

households to hold liquid assets, and thereby stimulates output.

This perspective also changes the way interest rate policy affects aggregate demand. While

current real interest rates continue to play a central role, the effect of future real rates on current

output is reduced. As a result, the model predicts a weaker impact of forward guidance compared

to the standard framework, consistent with empirical observation.

We use the model to study the optimal supply of public liquidity and how interest rate and

liquidity policies should be managed in an economy facing a temporary liquidity trap.

The first key result is that the optimal supply of liquidity should remain below the satiation

level. Maintaining a positive liquidity premium reduces government borrowing costs and, con-

sequently, the reliance on distortionary taxation. Moreover, a higher degree of substitutability

between private and public securities as collateral in the banking sector lowers the amount of

public liquidity required to support the optimal supply of safe assets, further mitigating the tax

burden.

The second main result of our analysis concerns the optimal policy response to shocks that push

the economy to the effective lower bound. A key feature of our framework is that it endogenizes

demand and supply shocks to safe assets as the primary drivers of movements in the natural rate

of interest. In this context, the optimal combination of interest rate and liquidity policy involves

a deliberate sequencing of actions. Specifically, once the policy rate reaches the lower bound, the

optimal response requires an increase in public liquidity to follow after few quarters the policy

rate is at the zero lower bound. This additional liquidity supports aggregate demand through the

liquidity channel and helps counteract the constraints on conventional monetary policy.

Importantly, our framework also implies that the process of removing accommodation should

begin with a reduction in liquidity—quantitative tightening—before the policy rate is lifted from

the lower bound. In other words, the exit strategy involves starting balance sheet normalization

ahead of interest rate liftoff, with both instruments ultimately returning to their steady-state levels.

More broadly, the results can be interpreted through the lens of distinct policy objectives—

stabilizing inflation versus stabilizing output. If the goal is to maintain inflation close to target,

the optimal policy prescribes a gradual and moderate increase in government liquidity, peaking

near the end of the liquidity trap and beginning to decline just before the policy rate liftoff. The

policy rate itself remains at the lower bound beyond the duration of the shock to avoid premature

tightening. In contrast, if output stabilization is prioritized, the optimal response calls for a more

front-loaded increase in liquidity, peaking early in the trap and being fully reabsorbed by the time

policy rates normalize. In this case, the interest rate liftoff occurs earlier—coinciding with the

disappereance of the shock.

Given that standard welfare functions in monetary models typically place more weight on infla-

tion stabilization, the first configuration tends to dominate in the optimal policy design. However,

our framework allows for a flexible analysis of these trade-offs, highlighting the importance of
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jointly managing interest rate and liquidity tools when conventional policy space is constrained.

1.1 Related literature

This work relates to several strands of the macro-finance literature. First, it connects to the in-

fluential literature initiated by Krishnamurthy and Vissing-Jorgensen (2011), which documents

the quantitative importance of the convenience yield on U.S. Treasury debt.1 Vissing-Jorgensen

(2023a, 2023b), Lopez-Salido and Vissing-Jorgensen (2023) and Afonso et al. (2023a) have es-

timated a reserve demand function for the banking sector, illustrating the relationship between

central bank reserves and the convenience yield. Furthermore, Vissing-Jorgensen (2023a, 2023b)

investigates the optimal supply of liquidity based on these estimates.2

Our contribution is to embed a banking sector into a New Keynesian framework, showing how

financing frictions in the intermediation activity and the non-pecuniary benefits of deposits generate

a multiplier between government liquidity (including reserves) and final private liquidity (deposits),

with implications for money market spreads tied to liquidity premia. We also analyze the optimal

provision of liquidity using a fully microfounded approach that emphasizes the resource constraints

imposed by distortionary taxation. In this respect, our analysis echoes Friedman (1960), who raised

the fundamental question of whether liquidity should be supplied by the private or public sector.

Our analysis is also related to recent literature that introduces departures from the standard

New Keynesian framework. Benigno and Nisticò (2017) develop a model in which the central bank

operates with two instruments: the interest rate on reserves and the quantity of reserves. In their

framework, reserves provide liquidity services through a cash-in-advance constraint alongside a

privately issued asset. They use this model to study how an exogenous reduction in the liquidity

properties of private assets affects inflation and output under different monetary policy regimes.

However, their banking sector is stylized and does not provide a general framework that nests the

standard Neo-Wicksellian paradigm, as our model does.

More recently, Diba and Loisel (2020, 2021) have also proposed New Keynesian models where

the central bank operates with two policy instruments. In their setting, financial intermediaries

demand reserves to reduce the costs of supplying loans, which are in turn demanded by firms due

to a working-capital constraint. In their model, reserves enter directly into the aggregate supply

equation. By contrast, in our framework, reserves are held to collateralize deposits, and the money-

market channel is distinct from the loan market. Diba and Loisel (2020) show that equilibrium can

be determinate even with interest-rate pegging, as reserves act as an additional policy instrument.

Diba and Loisel (2021) focus on the quantitative properties of policy at the zero lower bound,

demonstrating that their model is consistent with limited deflation and low inflation volatility.

Piazzesi, Rogers, and Schneider (2021) also emphasize the disconnect between money-market

rates and the interest rate relevant for consumption and saving decisions. They develop a banking

model in which monetary policy operates through either a corridor or a floor system, with the

1See also Krishnamurthy, Nagel, and Vissing-Jorgensen (2018) for a related analysis using euro-area data.
2See also Afonso et al. (2023b).
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main objective of comparing the pass-through of the policy rate to other money-market rates

across regimes. They find that equilibrium can be determinate even without a Taylor rule. Arce et

al. (2020) also explore the relationship between central bank balance sheet size and the interbank

rate. Bigio and Sannikov (2021) integrate monetary policy into a corridor system through a banking

model featuring both liquidity and credit channels. However, in their setup, once the corridor

around the policy rate collapses to zero, only the interest rate on reserves remains effective, and

the quantity of reserves becomes irrelevant. In contrast, in our model, reserves always constitute

an active policy instrument and remain relevant for inflation and output even in a floor system,

provided they deliver non-pecuniary benefits.3

While the aforementioned contributions offer important insights into the role of reserves, liq-

uidity, and monetary transmission mechanisms, they do not explicitly address how the optimal

supply of liquidity should be determined, nor how liquidity, interest-rate policy, and fiscal policy

should be jointly set during a liquidity trap episode. Our analysis complements this literature by

providing a unified framework in which these elements are treated jointly, with particular attention

to the implications for the design and normalization of monetary policy.

Earlier contributions such as Canzoneri et al. (2008) and Canzoneri, Cumby, and Diba (2017)

also explore environments in which the policy rate diverges from the rate relevant for intertemporal

consumption decisions. Cúrdia and Woodford (2010, 2011) present models with borrowers and

savers, where credit spreads arise due to financial intermediation. However, in their setting, the

policy rate still governs the consumption/saving choices of savers. Although the central bank’s

balance sheet serves as an additional policy tool in the presence of financial frictions, it operates

through the credit spread channel, not through a liquidity channel as emphasized in our framework.

There is both an older and more recent literature that has studied the optimal supply of

liquidity. Calvo (1978) and Woodford (1990) analyze monetary economies in which government

liabilities that provide liquidity services—namely money—do not bear interest, and where the

government finances its needs solely through distortionary taxation. They show that it is optimal

to supply money below the satiation level, in contrast with Friedman’s rule, which would emerge

under lump-sum taxation.

We generalize their results to a monetary economy with sticky prices, in which liquidity is

provided through interest-bearing government liabilities. Importantly, we introduce the novel role

of the pledgeability of private assets in the production of private liquidity as a mechanism to

reduce reliance on government debt. We establish these results within a non-stochastic optimal

policy framework under commitment, in the spirit of a timeless perspective. Sims (2022) derives

a similar conclusion in a non-stationary solution to a Ramsey problem in a monetary economy

with flexible prices. In his model, liquidity satiation is reached only asymptotically, whereas in our

framework, as in Calvo (1978), it occurs at a finite level. Relatedly, Angeletos, Collard, and Dellas

(2022) obtain comparable results in a setting with real debt and provide microfoundations for the

liquidity services of government liabilities.

3See also De Fiore, Hoerova, and Uhlig (2018) for a model featuring money-market frictions.
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A key extension relative to these contributions is our analysis of optimal monetary and fiscal

policy in a stochastic economy, particularly in response to shocks that drive the economy to the

zero lower bound. This allows us to study how interest-rate and liquidity policies should be jointly

managed under such conditions.

In this respect, our work is also related to the literature on optimal interest rate policy in liquid-

ity traps, including Eggertsson and Woodford (2003, 2004) and Werning (2011). The main differ-

ence is that, in our framework, liquidity becomes an active policy instrument during a liquidity-trap

episode. While Eggertsson and Woodford (2004) highlight the role of public debt in smoothing

distortionary taxation, our framework shows how public debt, by supplying liquidity, can directly

stimulate aggregate demand.

Our analysis is also connected to the literature on the so-called “forward-guidance puzzle,” as

identified by Del Negro, Giannoni, and Patterson (2013), where standard New Keynesian models

tend to overstate the effectiveness of forward guidance in stimulating current demand. Recent

attempts to resolve this puzzle, such as Werning (2015) and McKay, Nakamura, and Steinsson

(2016), rely on incomplete markets. In contrast, our framework generates a new aggregate demand

equation in which forward guidance is inherently less powerful, even under complete markets.

A similar attenuation effect is obtained in Diba and Loisel (2020), although through a different

transmission channel.

The present work starts with Section 2, providing the main intuition for why our framework

departs from the standard Neo-Wicksellian paradigm. Section 3 presents the model and Section 4

characterizes the equilibrium. Section 5 studies the model in a log-linear approximation to discuss

its main novelties. Section 6 discusses the optimal supply of liquidity while Section 7 studies how

interest-rate and liquidity policies should be managed in a liquidity trap. Section 8 concludes the

work.

2 Reserve Effectiveness: the “Liquidity Channel”

In this section, we highlight the key distinction between our framework and the traditional Neo-

Wicksellian paradigm. In the latter, the economy is typically described by a standard AS-AD model

in which the policy rate directly influences the aggregate demand (AD) equation. To illustrate this,

consider the standard Euler equation in a perfect-foresight setting:

Uc(Ct) = β
(1 + it)

Πt+1
Uc(Ct+1), (1)

where Uc(·) denotes the marginal utility of consumption at time t, β ∈ (0, 1) is the time preference

rate, it is the nominal interest rate, and Πt+1 is the gross inflation rate between t and t + 1. A

central assumption in the Neo-Wicksellian framework is that the policy rate set by the central

bank coincides with the nominal rate influencing the AD block. Raising the policy rate reduces

demand, conditional on expected future consumption and inflation, and thus allows the central

bank to steer the paths of inflation and output.
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Our framework retains the Euler equation (1), but introduces a crucial difference: there is no

direct connection between the central bankâ’s policy rate and the nominal rate that enters house-

hold consumption and saving decisions. Instead, we introduce the concept of a market nominal

interest rate, denoted iB, which is the risk-free rate on private, illiquid securities. Under perfect

foresight, the household Euler equation becomes:

Uc(Ct) = β
(1 + iBt )

Πt+1
Uc(Ct+1). (2)

In addition to borrowing or lending through private illiquid securities, households can also hold

safe, liquid assets Qt issued by financial intermediaries. These assets provide liquidity services.

Households’ portfolio choices determine the spread between the interest rate on safe assets, iQ,

and the market nominal rate iB:

1 + iQt = (1− µt)(1 + iBt ), (3)

where µt ≥ 0 is the liquidity premium, given by:

µt = Vq

(
Qt

Pt

)
,

where Vq(·) is the marginal utility from holding liquid assets, Qt is the nominal amount of safe

assets, and Pt is the price level. We assume that Vq(Qt/Pt) = 0 whenever Qt/Pt ≥ q̄, for some

satiation level q̄ > 0, implying that additional liquidity has no value beyond this threshold.

To understand the transmission mechanism in our framework, we model the banking sector

explicitly. Intermediaries issue deposits (safe assets), raise equity, and invest in both government

debt (reserves) and private securities, both of which can be pledged as collateral. In equilibrium,

the interest rate on deposits, iQ, becomes a weighted average of the policy rate (i.e., the interest

on reserves, iR) and the market nominal interest rate, iB:

1 + iQt = (1− ργ,t)(1 + iBt ) + ργ,t(1 + iRt ), (4)

where ργ,t ∈ [0, 1] is a time-varying variable that depends on the share of private assets that can

be pledged as collateral.4

The equilibrium condition in the banking sector further implies that the quantity of safe assets

is a multiple of government debt (or reserves):

Qt =
Bg

t

ργ,t
. (5)

This multiplier varies over time, depending on the pledgeability of private collateral. As the

pledgeability of private assets declines (i.e., ργ,t rises), the supply of private liquidity falls for a

4We will show that ργ,t increases as the share of pledgeable private debt falls.
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given level of government liquidity. This feature aligns with the empirical evidence from the 2007–

2008 financial crisis, when balance-sheet constraints in the financial sector reduced the availability

of private safe assets.

Combining (3), (4), and (5) yields the following key relationship between the market nominal

interest rate and the policy rate:

1 + iBt =
ργ,t

ργ,t − Vq

(
1

ργ,t

Bg
t

Pt

)(1 + iRt ). (6)

This expression provides several insights into the role of reserves (government debt) in monetary

policy:

• Reserves as an Independent Stabilization Tool.

Reserves can be used independently of the policy rate to stabilize the economy, even when

the zero lower bound is not binding. An increase in reserves (↑ Bg
t ), holding everything

else constant, lowers the liquidity premium and thus the market nominal interest rate (↓ iBt ),
which stimulates aggregate demand. This effect holds as long as the economy has not reached

full liquidity satiation (Vq(Qt/Pt) > 0).

• Amplification of Policy Rate Effects.

Adjustments in the policy rate iR have amplified effects on the market rate iB due to the

liquidity premium.5

The liquidity channel described above becomes ineffective when liquidity is abundant and fully

satiated, i.e., when Vq(Qt/Pt) = 0. In this case, reserves (or government debt) no longer influence

the market nominal interest rate.

A central implication of our framework is that the supply of liquidity is inherently tied to fiscal

capacity. Since we assume that central bank reserves and Treasury bills are perfect substitutes in

terms of the liquidity services they provide, the determination of inflation and output becomes a

joint monetary-fiscal policy problem.

Equation (6) also provides a lens through which to interpret liquidity crises. A decline in the

pledgeability of private collateral raises ργ,t, reducing the supply of safe assets Qt and increasing

the market interest rate iBt , thereby creating contractionary pressure. In a richer setting with

nominal rigidities, we will explore the optimal policy response through adjustments in the policy

rate (iR) and in the supply of government liquidity (Bg), subject to the zero lower bound and the

fiscal cost of issuing treasury bonds and central bank reserves.

5In equation (6), the term
ργ,t

ργ,t−Vq(
1

ργ,t

B
g
t

Pt
)
exceeds one whenever Vq(·) > 0.
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3 Model

In this Section, we present the building blocks of the model starting from the banking sector. We

then focus on households sector and the government, which encompasses both the treasury and

the central bank.

3.1 Banking Sector

At a generic time t, there exists a potentially infinite number of intermediaries that can engage

in intermediation without incurring any entry costs. Each intermediary operates for two periods.

Intermediaries entering at time t face the following balance sheet constraint:

Bg
t +At = Qt + (1− δ)Nt, (7)

where Bg
t represents holdings of government securities, including central bank reserves and Treasury

bills, which are remunerated at the rate iRt . At denotes holdings of short-term private securities

earning the market interest rate iBt . Qt denotes deposits issued by intermediaries, remunerated at

iQt , and Nt represents equity raised by intermediaries, which is more costly to issue than debt. The

cost is modeled through the parameter δ, with 0 < δ < 1.6

When intermediaries borrow from the private sector, At is negative. In contrast, Bg
t , Qt and

Nt are always non-negative. It follows, by the absence of arbitrage opportunities, that iBt ≥ iRt

and iQt ≥ iRt , as otherwise intermediaries could earn infinite profits.

Deposits Qt, issued by financial intermediaries, function as a ”safe asset” for households –that

is, a risk-free security providing liquidity services. These deposits are backed by the assets held by

the intermediary through the collateral constraint:

Bg
t + γtmax(At, 0) ≥ ρQt. (8)

Here, γt is the fraction of private securities At that can be pledged as collateral, with 0 ≤ γt ≤ 1,

and ρ, with 0 ≤ ρ ≤ 1, is the fraction of deposits that must be backed by collateral. Intermediaries’

holdings of government debt, Bg
t , reflect the implicit or explicit requirement to use high-quality

assets to back the liquid securities they issue.7

These assets include Treasury debt and central bank reserves. Importantly, we consider a

framework in which the properties of central bank reserves –namely, their ultimate safety and

liquidity within the currency system–also extend to Treasury debt. Hence, in what follows, the

two are considered equivalent and grouped under Bg.8

6A more general framework could include intermediaries supplying loans to the private sector to finance physical
capital for production, as in Benigno and Benigno (2021). Such a model would capture a credit channel, which is
orthogonal to the liquidity channel emphasized here and does not alter the results of the analysis.

7This requirement should not be interpreted strictly as a regulatory constraint. Even though reserve requirements
have been abolished in the U.S., banks continue to hold government securities including federal funds, Treasury debt,
mortgage-backed securities, and other liquid assets.

8An important characteristic of central bank liabilities is that they are default-free without the central bank being
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Private securities At represent risk-free, privately created instruments that can also be used as

collateral, albeit to a lesser extent than government debt. Only a fraction γt of these can be pledged

as collateral, and this fraction can vary over time. For example, in our context, a decline in γt may

reflect a deterioration in the quality of private assets, such as during the 2007-2008 financial crisis.

The interest rate iBt on private securities At represents the market (nominal) interest rate, as it

directly influences households’ consumption and saving decisions, as discussed in the next section.

We assume that 0 < γt < ρ, otherwise the collateral constraint (8) would never bind, rendering

the banking problem trivial.9

The parameter ρ determines the extent to which deposits must be backed by assets:

1. When ρ = 1, all deposits are fully backed by assets;

2. When ρ = 1 and γt = 0, deposits are backed exclusively by government debt, as in a narrow

banking system;

3. When ρ = 0, there is no collateral requirement.10

Intermediaries can also invest in cash, which is dominated in returns by government debt.

While the economy is cashless in equilibrium, cash still exists as a store of value. The possibility

of converting reserves into cash implies the existence of a zero lower bound on the interest rate on

reserves. Consequently, we have the condition:

iQt , i
B
t ≥ iRt ≥ 0.

3.1.1 Banks’ Optimization Problem

Intermediaries maximize rents, R, defined as the expected discounted value of profits minus the

value of equity:

Rt = Et {Mt+1Ψt+1} −Nt, (9)

where profits, Ψt+1, at time t+ 1 are given by:

Ψt+1 = (1 + iBt )At + (1 + iRt )B
g
t − (1 + iQt )Qt. (10)

Here, Mt+1 denotes the household’s stochastic discount factor, since consumers are the ultimate

owners of financial intermediaries.

Intermediaries are subject to a limited-liability constraint, which requires profits to be non-

negative:

Ψmin = (1 + iBt )At + (1 + iRt )B
g
t − (1 + iQt )Qt ≥ 0. (11)

subject to a solvency constraint, as discussed in Benigno (2025).
9This can be seen by substituting (7) into (8).

10In this case, for the central bank to effectively control money-market interest rates through the policy rate,
reserves must be supplied in positive quantities.
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This constraint is independent of the state realized at time t+ 1.11

Intermediaries choose At, B
g
t , and Qt to maximize (9), given (10), subject to the budget

constraint (7), the limited-liability constraint (11), and the collateral constraint (8).

It is useful to express the objective function (9) as:

Rt =

[
1 + iRt
1 + iBt

− 1

]
Bg

t −

[
1 + iQt
1 + iBt

− 1

]
Qt − δNt, (12)

where we have substituted the balance sheet constraint (7) into (10) to eliminate At, and used the

condition Et

{
Mt+1(1 + iBt )

}
= 1, which holds in the household optimization problem.

Inspection of (12) reveals the cost associated with issuing equity. As a result, the limited-

liability constraint (11) binds. Using (7) to solve for At and substituting into (11), we can solve

for Nt and substitute it into (12) to obtain:

Rt =
1

1− δ

{[
1 + iRt
1 + iBt

− 1

]
Bg

t −

[
1 + iQt
1 + iBt

− 1

]
Qt

}
. (13)

The banking equilibrium can be described through three main propositions.

Proposition 1 When government liquidity is abundant, i.e., Bg
t +γtAt > ρDt, deposit and market

interest rates are equalized to the policy rate:

iQt = iBt = iRt .

Proof. Since iRt ≤ iBt , for positive government liquidity to be held in equilibrium (Bg
t > 0), it

must be that iRt = iBt by (13). Then, applying the zero-rent condition for perfect competition in

the market of financial intermediation, we obtain iQt = iBt = iRt .

When government liquidity is abundant, the supply of safe assets by intermediaries becomes

perfectly elastic at an interest rate equal to the policy rate. As we will see when analyzing the

household’s problem, at these equalized interest rates the demand for liquidity is high enough to

reach satiation.

An additional interesting implication of the above proposition is that the Neo-Wicksellian

framework emerges in this case, meaning that our analysis coincides with that of the standard

New Keynesian model.

Proposition 2 When government liquidity is scarce, i.e., Bg
t + γtAt = ρDt and 0 ≤ γt < ρ, the

interest rate on deposits is given by:

(1 + iQt ) = ργ,t(1 + iRt ) + (1− ργ,t)(1 + iBt ), (14)

11With risky assets, the limited-liability constraint would be state-contingent.
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with

ργ,t = ρ(γt) = 1− 1− ρ

1− γt
.

Proof. The result can be proved by solving the limited-liability constraint (11) with equality

for At and substituting it into the collateral constraint (8). The resulting expression for Bg
t as a

function of Dt can then be plugged into (13) obtaining the result.

When government liquidity is scarce, the interest rate at which intermediaries are willing to

supply safe assets becomes a weighted average of the policy rate and the market interest rate, with

the weight given by ργ,t. The supply of such assets is perfectly elastic at this rate.

An interesting implication is that, as the degree of pledgeability of private assets in the collateral

constraint increases (i.e., as γt rises), the safe interest rate iQt is pulled toward the market rate iBt .

The parameter ρ plays a key role in characterizing the equilibrium relationships among money-

market interest rates under specific policy regimes:

• Narrow Banking Regime (ρ = 1)

In a narrow banking system, the rate on safe assets coincides with the policy rate, iQt = iRt .

However, in general, the market interest rate remains higher: iBt > iQt = iRt .

• No Collateral Requirement (ρ = 0)

When ρ = 0, it follows that iQt = iBt , and i
B
t = iRt as long as reserves are positively supplied by

the central bank. Therefore, when ρ = 0, all interest rates are equalized:

iBt = iRt = iQt ,

and the Neo-Wicksellian regime is once again nested within the model.

To conclude the characterization of the banking problem in this case, we derive the intermedi-

aries’ demand for government liquidity, private assets, and equity.

Proposition 3 The demand for government liquidity is Bg
t = ργ,tQt; the demand for private

assets is At = (ρ−1
γ,t − 1)Qt; and the demand for equity is Nt = 0.

Proof. These results follow from combining the zero-rent condition applied on (13) with the

balance sheet constraint (7), the collateral constraint (8), and the deposit rate equation (14).

The result that the demand for government liquidity is given by Bg
t = ργ,tQt is particularly

intriguing when considered alongside the supply of government liquidity, which is determined by

the joint actions of monetary and fiscal authorities. It follows that the supply of private safe assets

is given by:

Qt =
Bg

t

ργ,t
,

for a given Bg
t , with a time-varying multiplier of 1/ργ,t. This implies that government liquidity

does not fully determine the supply of private liquidity, since ργ,t depends on the pledgeability of

private assets as collateral.
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As this degree of pledgeability increases (i.e., γt rises and ργ,t falls), the supply of safe assets

expands for a given supply of government debt. Conversely, a fall in the fraction γt reduces the

creation of private safe assets – an effect observed during the 2007-2008 financial crisis.

As we will see later, Qt has direct effects on aggregate demand. Therefore, shocks originating

in the banking sector can propagate to the real economy.

Finally, consider the result that the demand for equity is zero. This arises because the assets

held by intermediaries are risk-free.12

3.2 Households

We consider a representative household that maximizes the following intertemporal utility:

Et0

{ ∞∑
t=t0

βt−t0ξt

[
C1−σ−1

t

1− σ−1
−
∫ 1

0

(Ht(j))
1+η

1 + η
dj + ξq,tV (qt)

]}
, (15)

where Et0 is expectation operator at time t0; β, with 0 < β < 1, is the intertemporal discount

factor in preferences; σ, with σ > 0, is the intertemporal elasticity of substitution in consumption,

C, which is the Dixit-Stiglitz aggregator of a unit measure of differentiated goods with elasticity

of substitution θ.

Households experience disutility from supplying the different varieties of labor H(j), with

j ∈ [0, 1]. The variety j is used by firm of type j to produce the differentiated good j; η, with

η ≥ 0, denotes the inverse of the Frisch elasticity of labor supply.

Finally, households derive utility from the real value of safe assets, q, with q = Q/P and P the

price level. The function V (·) is concave and non-decreasing, with a satiation point at a finite level

q̄ > 0; Vq(qt) = 0 for qt ≥ q̄. To ensure a well-defined demand for liquidity, when qt approaches q̄

from below, we assume that Vqq(qt) remains negative in the limit; ξ and ξq are preference shocks

with ξq affecting directly the preference for liquidity.

The household faces the following flow budget constraint:

PtCt +Qt + (1 + iBt−1)Bt−1 +Nt ≤ (1 + iQt−1)Qt−1 +Bt +

∫ 1

0
Wt(j)Ht(j)dj +Ψt +Φt + Tt. (16)

She/He can invest its savings in safe assets Q, which provide liquidity services, and pay an interest

rate iQ. She/He can borrow or lend through private risk-free bonds, B, that pay an interest rate

iB, but do not provide direct liquidity services.13

Households finance intermediaries through equity N . On the right-hand side of the budget

constraint, households get income from working in each firm, where Wt(j) represents the wage in

sector j. They receive profits from intermediaries and firms, denoted by Ψ and Φ respectively.

Additionally, T represents exogenous, non-negative government transfers.

12If intermediaries supplied risky loans, the demand for equity would be positive in order to absorb potential losses
on those loans.

13Note that in the household’s budget constraint a positive value for B denotes debt.
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Household’s optimization problem is to maximize utility (15) by choosing stochastic sequences

{Ct, Bt, Qt}∞t=t0
subject to the flow budget constraint (16), an appropriate borrowing limit and

initial conditions.

The first order condition with respect to the illiquid bonds, Bt is:

Et {Mt+1} =
1

1 + iBt
, (17)

where Mt+1, the nominal stochastic discount factor, is

Mt+1 = β
ξt+1C

−σ−1

t+1

ξtC
−σ−1

t

Pt

Pt+1
.

The expected value of the nominal stochastic discount factor equals to the price of the illiquid bonds

– the inverse of the gross nominal interest rate. The market nominal interest rate, iB,directly affects

the consumption-saving choices.

The first order condition with respect to safe assets, Qt, implies that

1 = µt + (1 + iQt )Et {Mt+1} , (18)

where µt is the liquidity premium, given by

µt =
ξq,tVq (qt)

C−σ−1

t

,

with Vq(·) is the partial derivative of V (·) with respect to Qt, and 0 ≤ µt < 1.

Combining (17) and (18), we obtain

(1 + iQt ) = (1− µt)(1 + iBt ),

indicating that the interest rate on safe assets is lower, or almost equal, than the rate on illiquid

bonds. The two rates coincides only when the economy is satiated. The optimal supply of equity,

N , is equal to the discounted value of intermediary profits:

Nt = Et {Mt+1Ψt+1} ,

consistent with the zero-rent condition applied to (9).

The optimal choice with respect to labor supply requires that the marginal rate of substitution

between labor and consumption is equal to the real wage

Ht(j)
η

C−σ−1

t

=
Wt(j)

Pt
,

for each variety of labor j.

Finally, the intertemporal budget constraint of the consumer holds with equality at all times.
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3.3 Firms

Firms are uniformly distributed over the interval [0, 1] and produce goods using labor as their

sole input, according to the production Yt(j) = Ht(j). They face a demand function of the form

Yt(j) = (Pt(j)/Pt)
−θYt, in which P (j) is the price of good j and θ is the elasticity of substitution

between different varieties of goods, with θ > 1. Prices are sticky following the Calvo model in

which a fraction 1− α of firms is allowed to change their prices maximizing the expected present

discounted value of its profits. Firms that cannot adjust their prices index them to the target Π.

Firms’ revenues are taxed at the rate τt. We do not detail here the firms’ optimization problem

and the first-order conditions, since these are standard in the literature. In the next Section, we

discuss the resulting Aggregate-Supply equation.

3.4 Government

The government sector includes the treasury and the central bank. Their combined budget con-

straint is expressed as

Bg
t = (1 + iRt−1)B

g
t−1 + Tt − τtPtYt, (19)

where the short-term debt (Bg) includes treasury bills and central bank reserves and carries the

nominal interest rate iR; Tt with Tt ≥ 0 denotes exogenous transfers and τt represents distortionary

taxation on firms’ revenues.

4 Equilibrium

We now describe the equilibrium conditions.

Equilibrium in the Goods Market

Goods market equilibrium requires that output equals consumption:

Yt = Ct.

Equilibrium in the Market for Private Illiquid Securities

The supply of illiquid securities is perfectly elastic at the rate:

1

1 + iBt
= Et

{
β
ξt+1Uc(Yt+1)

ξtUc(Yt)

Pt

Pt+1

}
. (20)

As shown in the banking equilibrium, the demand for illiquid securities by intermediaries is:

At = (1− ργ,t)B
g
t ,

and in equilibrium At = Bt. Therefore, the supply of government liquidity Bg
t determines the

equilibrium quantity of private illiquid securities through the factor 1− ργ,t.
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In the standard New Keynesian (Neo-Wicksellian) framework, equation (20) captures the mech-

anism through which monetary policy transmits to output and inflation. However, here iBt does

not necessarily coincide with the policy rate iRt , unless special conditions hold.

Remark 1 The Neo-Wicksellian framework – where all nominal interest rates are equalized– is

nested when: (i) government liquidity is abundant, i.e., Bg
t + γtAt > ρDt (see Proposition 1); or

(ii) government liquidity provides no non-pecuniary benefits, i.e., ρ = 0. In both cases, iBt = iRt ,

as discussed in Section 3.1.

In general, when government liquidity is scarce, the market interest rate – relevant for con-

sumption and saving decisions via (20)– exceeds the policy rate. The relationship between the two

depends on the equilibrium in the markets for private and public liquidity.

Equilibrium in the Market for Private Liquid Securities

On the supply side, the banking equilibrium implies that private liquid assets (deposits) are

supplied elastically at a rate given by:

(1 + iQt ) = ργ,t(1 + iRt ) + (1− ργ,t)(1 + iBt ), (21)

with 0 ≤ ργ,t ≤ 1.

On the demand side, households hold safe assets at a premium relative to the market rate.

This premium, in equilibrium, reflects the marginal value of liquidity:

1 + iQt
1 + iBt

=

1−
ξq,tVq

(
Qt

Pt

)
Uc(Yt)

 . (22)

Here, Uc(·) denotes the marginal utility of consumption. Equation (22) implicitly defines the

demand for private safe assets:

Qt

Pt
= Q

 ξq,t︸︷︷︸
+

, Yt︸︷︷︸
+

, iBt − iQt︸ ︷︷ ︸
−

 .

Demand for private safe assets is proportional to the price level, increases with the liquidity

shock ξq,t, and rises with output. Conversely, an increase in the spread between illiquid and liquid

assets (iBt − iQt ) raises the opportunity cost of holding safe assets and reduces their demand.

Equilibrium in the Market for Government Securities

The demand for government securities arises from the banking sector to satisfy the collateral

constraint:

Bg
t = ργ,tQt. (23)
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The supply of government securities follows from the government’s flow budget constraint:

Bg
t = (1 + iRt−1)B

g
t−1 + Tt − τtYt, (24)

where monetary and fiscal policy jointly set distortionary taxes τt, and the interest rate on reserves

iRt , whereas lump-sum transfers Tt are exogenous.

Determinants of the Market Nominal Interest Rate

We can use the equilibrium conditions for government and private safe asset markets to char-

acterize the determination of the market nominal interest rate. Combining equations (21), (22),

and (23), we obtain:

(1 + iBt ) =
ργ,tργ,t − ξq,tVq

(
1

ργ,t

B
g
t

Pt

)
Uc(Yt)

(1 + iRt ). (25)

This expression shows the proportional relationship between the market nominal interest rate

and the policy rate. However, the proportionality factor is shaped by the supply of government

liquidity (Bg
t ), and by determinants of private liquidity, as the liquidity preference shock (ξq,t)

and the pledgeability of private assets, which is a factor influencing (ργ,t). When combined with

(20), this yields a novel aggregate demand relationship distinct from the standard New Keynesian

model.

Aggregate Supply Block

The aggregate supply equation is implied by the standard first-order conditions by firms and

is given by the following set of three equations:

(
1− α

(
Πt
Π

)θ−1

1− α

) 1+θη
θ−1

=
Ft

Kt
, (26)

in which Ft and Kt are given by

Ft = ξt(1− τt)Uc(Yt)Yt + αβEt

{(
Πt+1

Π

)θ−1

Ft+1

}
, (27)

Kt = ξtY
1+η
t + αβEt

{(
Πt+1

Π

)θ(1+η)

Kt+1

}
, (28)

Economy’s Resource Constraint

Finally, the intertemporal resource constraint of the economy, which mirrors the intertemporal

budget constraint of the private sector, implies:

(1 + iRt−1)B
g
t−1

Pt
= Et

{ ∞∑
T=t

βT−t ξTUc(YT )

ξtUc(Yt)

[
τTYT − TT

PT
+
iBt − iRt
1 + iBt

Bg
t

Pt

]}
, (29)
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at each time t and for every possible contingency.

The left-hand side captures the real value of the government’s outstanding liabilities to the

private sector. This must equal the present discounted value of expected future real primary

surpluses (tax revenues net of transfers), plus the (implicit) revenues the government obtains from

issuing interest-bearing liabilities (reserves or treasury notes) at rates below the market rate – i.e.,

seigniorage-like gains.

Equilibrium

Equilibrium is a set of stochastic sequences
{
iBt , i

R
t , Yt, Pt, B

g
t ,Kt, Ft, τt,Πt

}∞
t=t0

satisfying equi-

librium conditions (20), (24), (25), (26), (27), (28), (29) and Πt = Pt/Pt−1, for each t ≥ t0, with

iBt ≥ iRt ≥ 0, given the stochastic sequence {ξt, ξq,t, Tt, ργ,t}∞t=t0
and initial conditions iRt0−1, B

g
t0−1.

There are two degrees of freedom to specify monetary and fiscal policy, which can set the stochastic

sequences for the policy rate and tax rate,
{
iRt , τt

}∞
t=t0

.

5 A New Framework for Monetary Policy Analysis

In this section, we present the model in its log-linearized form around the steady state, in order

to compare it with the benchmark New Keynesian Neo-Wicksellian framework. The details of the

log-linear approximation are provided in Appendix A.

Aggregate Demand

The aggregate demand (AD) block builds on the Euler equation, as in the New Keynesian

model. The key difference here is that the relevant nominal rate is the market interest rate, iB,

rather than the policy rate, as shown in equation (20). The log-linearized AD equation is:

Ŷt = EtŶt+1 − σ
(
ı̂Bt − Et(πt+1 − π)− r̃nt

)
, (30)

where r̃nt is a function of the preference shock ξ, given by r̃nt = Etξ̂t+1 − ξ̂t. Variables with hats

denote log-deviations from steady state.

The market and policy interest rates are connected through equation (25), which implies, in

its log-linearized form:

ı̂Bt = ı̂Rt︸︷︷︸
Policy rate

+
ν

ργ − ν
σ−1 Ŷt︸︷︷︸

Output

− ν

ργ − ν
σ−1
q b̂gt︸︷︷︸

Government debt

+
ν

ργ − ν

(
ξ̂q,t + (σ−1

q − 1)ρ̂γ,t

)
︸ ︷︷ ︸

Shocks

,

(31)

where ν = Vq/Uc is the steady-state ratio of the marginal utility of liquidity to that of consumption.

Note that σq = −Vq/(Vqqq) denotes the intertemporal elasticity of substitution in liquidity, and ργ

is the steady-state value of ργ,t.
14

14A condition for equilibrium, discussed in the Appendix A, is that ν < ργ .
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In the standard NK model, iBt = iRt , a condition that arises under full liquidity satiation ν = 0.

Equation (31) shows that, under liquidity scarcity (ν > 0), three additional forces shape the market

rate.

The first factor is output. Higher output increases the liquidity premium, pushing the market

rate upward. This alters the AD channel and reduces the power of forward guidance, as it will be

shown shortly.

The second factor is government debt. An increase in the supply of government debt (including

central bank reserves), for given output, reduces the liquidity premium, lowering the market rate.

Finally, the third force are shocks in the market of private liquidity. A rise in liquidity demand

(ξ̂q,t) or a fall in private collateral pledgeability (reflected in ρ̂γ,t) increases the liquidity premium

and market rate.15

Substituting equation (31) into (30) yields a modified AD equation. We consider two cases.

First, when ν = 0, liquidity is fully satiated in steady state: iBt = iQt = iRt . The AD equation

reduces to the standard NK form:

Ŷt = EtŶt+1 − σ
(
ı̂Rt − Et(πt+1 − π)− r̃nt

)
. (32)

Second, when ν > 0:

Ŷt = (1− ρ−1
γ ν)EtŶt+1 − σ(1− ρ−1

γ ν)(̂ıRt −Et(πt+1 − π)− r̃nt )+ q−1
y ρ−1

γ ν(b̂gt − qξ ξ̂q,t − qρρ̂γ,t), (33)

where qξ ≡ σq, qy ≡ σq/σ, and qρ ≡ qξ(σ
−1
q − 1). There are three important novel features shown

by the AD equation when liquidity is not fully satiated: first, there is a role for liquidity, captured

by government debt, b̂gt , in affecting the aggregate demand equation (liquidity channel) with an

increase in government liquidity having an expansionary effect; second, the coefficient (1 − ρ−1
γ ν)

in front of the expected level of output is positive and less than the unitary value, which has

implications for the effectiveness of forward guidance; third, positive demand shocks to liquidity,

given by an increase in ξ̂q, and negative supply shocks to liquidity, given by a rise in ρ̂γ,t, both

lower aggregate demand.

To further clarify the differences from the standard NK model, solve equation (33) forward:

Ŷt = −νρσEt

∞∑
T=t

νT−t
ρ

(
ı̂RT − (πT+1 − π)− r̃nT

)
+ q−1

y ρ−1
γ νEt

∞∑
T=t

νT−t
ρ

(
b̂gT − qξ ξ̂q,T − qρρ̂γ,T

)
, (34)

where νρ ≡ 1− ρ−1
γ ν ∈ (0, 1).

The above equation shows that not only the current real rate has less impact on output,

for given intertemporal elasticity of substitution in consumption σ, but also movements in the

expected future rates influence current output less and with a decaying weight. This finding shows

15There are two channels at play to understand the effect of ρ̂γ,t on ı̂Bt . A decrease in γ, which raises ρ̂γ,t, reduces
the supply of deposits for a given Bg

t (see equation 23), exerting upward pressure on ı̂Bt . Conversely, a rise in ρ̂γ,t
decreases ı̂Bt through (21). When σq < 1, the first channel dominates. This condition is assumed in our calibrated
examples.
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that forward guidance has a reduced impact in this framework with respect to the standard New-

Keynesian model. A similar argument applies to the effectiveness of the supply of liquidity in

influencing current aggregate demand, which is in general a novel channel.

The supply of government liquidity is at the end related to the intertemporal resource constraint

of the economy and ultimately to the tax rate. A first-order approximation of (29) implies that

b̂gt−1 − (πt − π)− σ−1Ŷt + ı̂Rt−1 = [byŶt + ϱτ̃t − ϱT̃t + bξ ξ̂q,t + bq b̂
g
t ]

+βEt[b̂
g
t − (πt+1 − π)− σ−1Ŷt+1 + ı̂Rt − r̃nt ],

in which by, ϱ, bξ, bq are parameters defined in the Appendix A and T̃t ≡ (Tt − T )/Y.

Aggregate Supply

The aggregate supply (AS) block follows the standard New Keynesian Phillips Curve, but

incorporates distortionary taxation:

(πt − π) = κ(Ŷt + ψτ τ̃t) + βEt(πt+1 − π), (35)

where κ > 0 and ψτ > 0 are structural parameters derived in Appendix A. Here, πt ≡ ln(Pt/Pt−1)

and π ≡ lnΠ is the steady-state inflation target; τ̃t ≡ τt − τ denotes the tax gap.

Inflation deviations from target depend positively on output and expected inflation, and are

amplified by increases in the distortionary tax rate.

6 The Optimal Supply of Liquidity

Our model features a central role for government debt in the economy: it drives the supply of private

liquidity, which provides households with non-pecuniary benefits. However, issuing government

debt comes at a cost, as it must be financed through distortionary taxation. In this section,

we examine a key policy question: what is the optimal supply of liquidity? Our approach also

offers a first-pass analysis of the optimal size of the government’s consolidated liabilities, taking

into account the liquidity multiplier between public and private liquidity—that is, the liquidity

channel.

We carry out this analysis in the deterministic version of the model. To simplify the exposition,

we abstract from nominal rigidities and assume that inflation is fixed at its target level, Π. As

demonstrated in Appendix D, this assumption is without loss of generality: targeting inflation is

optimal even in the more general framework.16

The optimal supply of liquidity is determined by the interaction of two opposing forces. On

one hand, household utility depends positively on V (q), implying that it is optimal to provide

enough liquidity to reach the satiation threshold q̄. On the other hand, supplying less liquidity can

16We analyze optimal policy under commitment from a timeless perspective, using a recursive formulation of the
Ramsey problem augmented with initial constraints that make the solution stationary.
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be beneficial, as it reduces the need for distortionary taxation, due to the liquidity premium that

arises when liquidity is scarce.

The balance between these forces implies that the optimal level of liquidity is strictly below

the satiation threshold q̄.

We also explore how the optimal provision of liquidity is affected by the degree to which private

assets can be pledged as collateral. When private assets are more easily pledgeable, the optimal

supply of liquidity increases. Conversely, the optimal level of government debt—as well as the

associated tax rate—declines.

6.1 Optimal Liquidity Problem

In the deterministic steady state the optimal policy problem requires the maximization of house-

holds utility subject to resource and technological constraint. Specifically, we can rewrite house-

holds’ utility as:

Ut0 =

{ ∞∑
t=t0

βt−t0

[
Y 1−σ−1

t

1− σ−1
− Y 1+η

t

1 + η
+ V (qt)

]}
, (36)

in which we have set ξt = ξq,t = 1 and noted that Ct = Yt and Ht(j) = Yt, for each j. We specify

the utility from safe assets as:

V (q) = ln
(
q
q̄

)
− q

q̄ for q < q̄

V (q) = −1 for q ≥ q̄.

This function is non-decreasing in q with a satiation point at q̄, where Vq(q) −→ 0 and Vqq(q)

remains finite as q approaches q̄.

In the flexible-price allocation, the level of output is a function of the tax rate through the

functional form:

Yt = Y (τ) ≡
[
(1− τ)

µθ

] 1
η+σ−1

. (37)

An increase in the tax on revenues lower output for a given level of monopolistic distortions,

µθ ≡ θ/(θ − 1): this effect represents the costs of using distortionary taxation to finance public

expenditure (i.e. transfers, Tt, in our case).

The optimization problem is also subject to the following intertemporal resource constraint

Zt0 =
∞∑

T=t0

βT−t0

[
Y −σ−1

T

(
τTYT − TT

PT

)
+
Vq (qt) b

g
t

ργ

]
, (38)

which is derived from equation (29), having defined bgt ≡ Bg
t /Pt and

Zt0 ≡ Y −σ−1

t0

(1 + iRt0−1)b
g
t0−1

Π
.

In going from (29) to (38), we have used equations (21) and (22) and assumed a constant ργ .
17

17In obtaining this constraint, we have assumed that ρ−1
γ bgt = qt since only when Vq = 0, ρ−1

γ bgt > qt.
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The resource constraint links the outstanding liabilities of the government sector at time t0

(the LHS of (38)) with the present discounted value of its inlays (the RHS of (38)). There are two

components: the primary surplus
(
τtYt − Tt

Pt

)
, and the (implicit) revenues generated from issuing

liabilities that are priced at discount relative to the market nominal rate. The term Vq (qt) b
g
t is

indeed proportional to iB − iQ > 0 when the economy is not satiated, representing an alternative

resource generated by the liquidity premium.

The optimal tax, τt, and liquidity policy, qt, maximizes (36) under the constraint (38) con-

sidering (37) and given a constraint Zt0 = Z̄, which is going to be specified in such a way to be

self-consistent with the equilibrium values of the variables involved in Zt0 . This is consistent with

the notion of commitment from a timeless perspective.18

6.1.1 Results

The first-order condition with respect to τt implies that(
1− 1− τt

µθ

)
= λ[(1 + η)(1− τt)− (1− σ−1)− σ−1g], (39)

in which λ is the Lagrange multiplier attached to the constraint (38) and g = T/(PY ) is the

transfer to GDP ratio. The condition shows that the optimal tax rate is constant at τt = τ.

The first-order condition with respect to qt implies that

Vq(qt) = −λ(Vq(qt) + Vqq(qt)qt). (40)

This condition determines the equilibrium level of liquidity.

Proposition 4 There are two possible steady-state equilibria: a full-liquidity satiation with q = q̄

and τ = τ , and a below-satiation liquidity equilibrium with q = q∗ < q̄ and τ = τ∗.

Proof. Note that (40) has two solutions: one in which qt ≥ q̄ and all derivatives of the function

V (·) are zero, the second with q = q∗ < q̄. Details of the proof are in Appendix B.

We now establish that the below satiation equilibrium leads to higher welfare. We prove this

result analytically for a special case, and then we show that it holds numerically under our preferred

calibration.

Proposition 5 Assume g = 0, µθ = 1, η = 0, σ = 1. The equilibrium (τ∗, q∗) with q∗ < q̄ has

higher welfare than the equilibrium with full satiation of liquidity (τ̄ , q̄). Moreover

τ∗ =
1− β

1 + β
ργq

∗ ≤ τ̄

2
.

18The additional constraint Zt0 = Z̄ is such to make the optimization problem recursive and the solution stationary,
as discussed in Benigno and Woodford (2003).
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Proof. In Appendix C.

Three results emerge from the special case with log utility (σ = 1), linear disutility with respect

to labor (η = 0), no markup distortions (µθ = 1) and zero government transfers (g = 0).

The optimal provision of liquidity remains below the satiation threshold. The rationale for this

lies in balancing two key factors we have identified. It involves striking a balance between meeting

liquidity demand (represented by V (q) in the utility function that is maximum when Vq(q) = 0)

and minimizing taxation to stimulate output.

To optimize this trade-off, the policy sets liquidity such that Vq(q) remains positive in (38),

mantaining a liquidity premium. The liquidity premium allows the government to finance its

outstanding debt at below-market interest rates reducing the reliance on distortionary taxation.

This result is reminiscent of earlier findings by Calvo (1978), Woodford (1990), Sims (2022) and

Angeletos et al. (2022). Our results complement and generalize these findings to a setting in which

policymakers act under commitment from a timeless perspective, by allowing for both sticky or

flexible prices and by using a preference specification where liquidity has a satiation point at a

finite level.

The second implications of (5) is that in the optimal equilibrium, the tax rate required to

finance the outstanding liability of the government sector is more than halved compared to the tax

rate under full liquidity satiation.

The third result shows that the optimal tax rate is a linear function of the parameter ργ which

is a decreasing function of the fraction, γ, of private assets that can be pledged as collateral.

When γ = 0 the parameter ργ is equal to ρ and the solution for optimal tax becomes τ∗ =
1−β
1+βρq

∗.

As γ increases, more private assets serve as collateral, reducing the dependence on public

liquidity and ργ goes to zero.19 Therefore the supply of government debt, given by ργq
∗, falls when

more private assets can be pledged, and the tax rate falls too. When ργ goes to zero, the tax rate

τ∗ reaches zero as well as the tax rate τ̄ in the full satiation solution. The two solutions coincide

and liquidity is fully satiated. Not surprisingly, there are no financing needs, no monopolistic

distortions and the first best is achieved.

In the general case in which government transfers g are positive, the previous result no longer

holds. When g > 0, there is a financing need and since taxes are distortionary it is optimal to rely

on the liquidity premium to balance distortions even when ργ −→ 0, as shown in Appendix C.

19Recall that when γ ≥ ρ, the collateral constraint is not binding and liquidity premia are zero.
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Table 1: Comparisons between full-satiation and optimal steady states

(1) (2) (3) (4) (5) (6)

τ̄ − g τ∗ − g τ̄ τ∗ q∗/q̄ ∆c

2% −7.7% 22% 12.3% 89.9% 0.71%

3% −7.0% 23% 13.0% 89.6% 0.78%

4% −6.4% 24% 13.6% 89.4% 0.86%

5% −5.8% 25% 14.2% 89.1% 0.94%

6% −5.2% 26% 14.8% 88.8% 1.02%

To illustrate the generality of Proposition 5, we use the calibration specified in the next Section,

i.e. µθ = 1, 11, η = 0.47, σ = 0.5 and ργ = 0.21. Moreover, as we are calibrating the model at

an annual frequency, we assume β = 0.98, which is consistent with a two-percent steady-state real

interest rate, and g = 0.2, representing a government expenditure -to-GDP ratio of 20%. In this

example we assume that γ = 0, therefore ργ = ρ.20

Table 1 presents a comparison of key variables, between the full satiation equilibrium and the

optimal steady-state equilibrium with lower level of liquidity.

Our key findings are as follows:

1. Government Surplus versus Deficit

In the full satiation equilibrium, a surplus is required to back all liquidity, as shown in

column 1 of Table 1. In the below satiation equilibrium, the budget balance shifts to a deficit

(column 2). This shift occurs because the liquidity premium generates sufficient rents to

cover government’s liabilities.

2. Tax Rate

The optimal tax rate τ∗ is significantly lower than in the full-satiation equilibrium, nearly

halving in some cases. Compare column 3 and 4. This is a direct result of reducing the

liquidity supply, which allows taxation to be relaxed.

3. Supply of Liquidity

The optimal tax rate requires a 10-12% reduction in liquidity supply with respect to full

satiation. This is reflected in the q∗/q̄ ratio in the fifth column of Table 1.

20To calibrate q̄, we ensure that the steady state with full satiation of liquidity generates a specific surplus over
GDP, consistent with constraint (B.6) in Appendix B. For example, setting τ̄ − g in (B.6) at 0.02, corresponding to
a 2% surplus over GDP, implies a tax rate τ̄ at 22%, i.e. τ̄ = 0.22 . Then, given the other parameter in (B.6) and
the imposed τ̄ we derive q̄. For the same, q̄, we solve (39), (B.7) and (B.8), given in Appendix B, to obtain q∗ and
τ∗. We then vary τ̄ − g in the range [0.02, 0.06], computing the respective q̄, Ȳ and Ū . For each of the generated q̄,
we compute τ∗, q∗, and U∗.
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4. Welfare Gains

The last column shows the welfare gains from moving to the optimal equilibrium starting

from the solution with full satiation of liquidity, measured as the percentage change in steady-

state consumption. These gains are between 0.7% and 1%, depending on the tax rate in the

full satiation equilibrium, τ̄ .

6.1.2 The Role of Private Assets as Collateral for Private Liquidity

We now examine the role of γ, the fraction of private assets that can be used as collateral to

back safe assets issued by the financial intermediaries. Previously, we established that when γ is

sufficiently high – specifically, when it exceeds the fraction of safe liabilities to be collateralized

(γ ≥ ρ) – the collateral constraint is not binding. In which case, all nominal interest rates are

equalized (iBt = iQt = iRt ) and supply of safe assets fully satiates liquidity demand. This corresponds

to the standard case in the optimal taxation literature, where the optimal steady-state level of

government debt is not determined (see among others Benigno and Woodford (2004)). However,

when γ < ρ, the collateral constraint can be binding, leading to a direct relationship between the

supply of safe assets and government debt: Qt = Bg
t /ργ . As γ converges to ρ, ργ approaches zero.

Moreover, ργ is decreasing in γ and reaches ρ when γ = 0.

To analyze the effects of varying γ, we use the same calibration as before, setting τ̄ = 0.23 and

the associated q̄ when γ = 0 to obtain τ∗ = 0.13 as in the previous Table. Under this conditions

we obtain that the debt-to-output ratio is 125.4%. Keeping τ̄ and q̄ fixed, we now vary γ up to ρ

with the results presented in Table 2.

Table 2: Varying the fraction (γ) of private assets held as collateral

(1) (2) (3) (4)

γ bg/Y τ∗ q∗/q̄

0% 125.4% 13.0% 89.6%

5% 100.6% 12.6% 89.8%

10% 73.0% 12.2% 90.0%

15% 42.18% 11.7% 90.2%

21% 0% 11.4% 90.5%

Our key findings are as follows:

1. Declining Government Debt

As γ increases, less government debt is required to collateralize safe assets, and the debt-to-

output ratio declines from 125.4% when γ = 0 to 0% when γ = 21%, as shown in column 2

of Table 2.
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2. Tax Rate Reduction

The optimal tax rate (τ∗) decreases as γ rises but remains positive, staying above 10% even

in the limiting case (see column 3).

3. Increased Liquidity Supply

The supply of liquidity also increases with γ but not to reach satiation, as shown in column

4. Consistently with the discussion of Proposition 5 it is still optimal in the limit not to

satiate liquidity because of a positive g.

7 Optimal Monetary Policy Normalization

In this Section, we analyze how interest rate and liquidity policies should be managed when the

economy is hit by the stochastic disturbances of the model, namely the preference shock ξt and

the liquidity shocks ξq,t and ρ̂γ,t. What is interesting is that the three shocks have isomorphic

effects on an appropriately-defined natural real rate of interest rnt , once we “neutralize” their fiscal

effects using the transfer policy. Therefore, the analysis of the response to the three shocks can be

synthesized in the response to a shock to the natural real rate of interest rnt . In this respect, we

are interested in a magnitude of such a shock that is enough to bring the policy rate, under the

optimal policy problem, to face the zero-lower bound constraint.

The isomorphism between the three shocks is intriguing because it demonstrates that move-

ments in the natural rate may not solely stem from shocks to intertemporal preferences, such as

ξt, which is the main device used in the literature to drive the model economy to the zero lower

bound, as shown in Eggertsson and Woodford (2003). These same movements in the natural rate

can originate from disturbances in the market of liquidity, originating from the shortages in the

supply of safe assets. This type of shock has been identified as significant in understanding the

narrative of the 2007-2008 financial crisis.

In this context, we contrast sub-optimal policy rules with the optimal policy that entails the

coordinated choice of both monetary and fiscal policy. The innovative aspect of the framework

outlined here, and of the analysis within this section, is that policy-making doesn’t solely rely on a

single instrument or degree of freedom, such as the interest rate, but also requires the specification

of liquidity policy. This is particularly pertinent in offering an interpretation of the balance-sheet

dynamics many economies have undergone since the 2007-2008 financial crisis.

Optimal policy is computed using linear-quadratic approximations following the method ex-

pounded in Benigno and Woodford (2003). The approximation is taken around the optimal steady

state discussed in Section 6 for which the optimal supply of liquidity is below satiation. Details

are in Appendix D, where we show that a quadratic approximation of the loss function has the

following form

Lt0 = Et0

∞∑
t=t0

βt−t0

{
1

2
λyy

2
t +

1

2
λπ(πt − π)2 +

1

2
λq q̂

2
t

}
, (41)
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for positive parameters λy, λπ and λq. The policymaker should care about deviations of an

appropriately-defined output gap, y = Ŷt− Ŷ ∗
t , inflation, π, and real liquidity, q̂, from their steady

state values. The main difference with respect to standard analyses within the New-Keynesian

framework is that there is an additional cost of varying liquidity with respect to the steady state.

Since liquidity is a tool that can be used for stabilization purposes, as we have seen, this cost limits

its usage, considering also the distortions implied by the required variations in taxes.

The optimal policy problem is subject to three constraints: AS, AD equations and the intert-

ertemporal resource constraint of the government. The aggregate supply (35) is

(πt − π) = κ[y + ψτ (τ̃t − τ̃∗t )] + βEt(πt+1 − π),

in which now τ̃∗t represents a combination of the shocks such that when τ̃t achieves that value,

output and inflation can be stabilized at their respective targets implied in the loss function.

The AD equation (33) can be written as:

yt = (1− ρ−1
γ ν)Etyt+1 − σ(1− ρ−1

γ ν)(̂ıRt − Et(πt+1 − π)− rnt ) + q−1
y ρ−1

γ νb̂gt , (42)

for an appropriately defined natural real rate of interest, rnt , given by

rnt = Etξ̂t+1 − ξ̂t +
1

σ
EtŶ

∗
t+1 −

1

σ(1− ρ−1
γ ν)

Ŷ ∗
t −

ρ−1
γ ν

(1− ρ−1
γ v)

(
ξ̂q,t + (σ−1

q − 1)ρ̂γ,t

)
. (43)

The natural real rate of interest rnt depends on the four shocks of the model, ξ̂t, ξ̂q,t, ρ̂γ,t and T̂t,

since the desired level of output Ŷ ∗
t is a function of the transfer T̂t, as discussed in Appendix D.

What is crucial to observe is that a decline in the natural real rate of interest can arise from either

the preference shock, ξ̂t, as conventionally observed in the literature, or from liquidity shocks ξ̂q,t

and ρ̂γ,t. Specifically, positive shocks to ξ̂q,t and ρ̂γ,t result in a decrease in rnt . As illustrated by

the equilibrium in the money market (22), an increase in the demand for liquidity, represented by a

positive ξ̂q,t, not met by supply or an increase in output, leads to a wider spread in money-market

rates. Likewise, a reduction in the fraction of private assets eligible as collateral raises ρ̂γ,t and

causes a decrease in the natural real rate of interest, provided the decline in safe assets is significant

enough to counterbalance the lower interest rate, i.e., when σq < 1. This suggests that disruptions

in the liquidity market can capture certain aspects of events like the 2007-2008 financial crisis or

the pandemic, during which money-market spreads markedly increased, becoming drivers of the

decline in the natural real rate of interest.

An additional constraint of the optimal policy problem is the first-order approximation of (29),

which can be written as

b̂gt−1 − (πt − π)− σ−1yt + (̂ıRt−1 − rnt−1) = −ft + Et

∞∑
T=t

βT−t[byyt + bτ (τ̃t − τ̃∗t ) + bq b̂t], (44)

for parameters by, bτ , bq defined in Appendix D; the variable f , as in Eggertsson and Woodford
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(2004), captures the “fiscal stress,” which measures the extent to which full stabilization of output,

inflation and liquidity at their targets implied by the loss function (41), is not compatible with

the intertemporal budget constraint of the government. The “fiscal stress” variable includes a

combination of all the shocks in the economy. When ft = 0 at all times, which can be obtained

by varying appropriately the transfer T to offset the other shocks, it is feasible to reach all three

targets in the loss function, provided the movements in the natural real rate of interest, rn, do

not imply violation of the zero-lower bound for the nominal interest rate.21 By assuming ft = 0

we are then abstracting from the different fiscal consequences of the shocks ξ̂t, ξ̂q,t and ρ̂γ,t with

the already-mentioned result that they have isomorphic effects on the economy, which can be

ultimately captured by movements in the natural real rate of interest. Assuming ft = 0 implies

that the optimal policy is simply to achieve all targets in (41) and ı̂Rt = rnt all times. However, when

the natural real rate of interest, rn, falls substantially, there could be violation of the zero-lower

bound for the policy rate, iR. A trade-off emerges between stabilizing the relevant variables.

We consider, therefore, how policy should be set when the only constraint on the full stabi-

lization of the relevant variables in (41) is given by the existence of the zero-lower bound on the

policy rate.22

We analyze a shock that brings the natural real rate of interest, rn, from the steady-state level

of 2% to -4% at annual rates for twelve quarters. Given that the steady-state policy rate is set at

4% accounting for a 2% inflation target, the shock to the natural rate of interest could be fully

accommodated only if the policy rate could fall at −2%. The zero-lower bound prevents this fall

and creates an interesting trade-off among stabilizing the relevant macroeconomic variables.

Preview of the results

In the benchmark calibration, in which the welfare-based loss function gives higher weight to

inflation stabilization rather than output gap stabilization, optimal policy in a liquidity trap can

be better achieved by a combination of an appropriate interest-rate policy, which implies a longer

stay at the zero-lower bound than the duration of the shock, and a tax policy in which taxes are

raised at the beginning of the trap and lowered at the end. An active liquidity policy is optimal,

but with marginal benefits on the output gap.

These benefits increase when spreads in money markets are calibrated at a higher value to

capture features of the 2007-2008 financial crisis. Liquidity should rise early, moved by a lower tax

rate, peak in the middle of the liquidity trap and withdrawn before the liftoff of the policy rate,

at a fast rate.

21In this reasoning, we are considering zero values for the initial conditions b̂gt0−1, ı̂
R
t0−1,r

n
t0−1. We could also allow

for different initial conditions requiring, in the case, ft0 to adjust appropriately.
22Note that when the optimal supply of liquidity is close to eliminate the distortions in the money market, i.e.

ν → 0, the problem collapses to exactly that analyzed by Eggertsson and Woodford (2004) in the standard New-
Keynesian model with absence of lump-sum taxes. Indeed, the AD equation boils down to the standard one in which
liquidity does not affect, directly, aggregate demand. The AS equation is already the same as in their framework, as
well as the parameters λy and λπ in the loss function (41). With ν → 0, λq goes instead to zero as well as bq in the
constraint (44); by and bτ also approach same values as in Eggertsson and Woodford (2004).
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Figure 1: Comparison between optimal policy and sub-optimal rules. Impulse responses follow a negative shock to
the natural rate of interest, lowering it to −4% at annual rates for 12 quarters. Output gap is in percent, inflation
and interest rates are in percent and at annual rates. Real liquidity is in percent deviations from steady state. The
tax rate is in percentage points and shown as deviations from its steady-state value.

When the policymaker’s objectives are tilted to stabilize output gap, liquidity policies are more

effective and desirable. The policy rate does not need to stay longer at the zero-lower bound than

the duration of the shock. Liquidity should peak early in the trap and then withdrawn at a faster

pace to be completely absorbed at the same time the policy rate is normalized.

Benchmark calibration

In Figure 1 we compare the optimal policy with sub-optimal policies in which (i) the central

bank sets inflation at the target, i.e. πt = π, whenever it is feasible, otherwise it sets the policy

rate to zero and (ii) the fiscal authority keeps the tax gap τ̃t − τ̃∗t at a level that it expects to

maintain indefinitely without violating the intertemporal government budget constraint; that is,

an expected path of the tax gap such that Et(τ̃T − τ̃∗T ) = τ̃t − τ̃∗t for all T ≥ t is consistent with

(44).23

The Figure shows the costs of the sub-optimal policy with respect to the optimal in terms of

contraction in the output gap and inflation below the target. The liftoff of the policy rate from the

zero-lower bound occurs exactly at the time in which the shock vanishes. Optimal policy, instead,

succeeds to stabilize inflation while keeping moderate variations in the output gap.

There are three important features of the optimal policy that we discuss. First, in line with

the literature, optimal policy requires a stay at the zero-lower bound longer with respect to the

duration of the shock. In the Figure, the interest rate remains at the zero-lower bound for two

additional quarters. What is interesting to note is that the liquidity channel in the AD equation

does not imply a shorter stay at the zero-lower bound with respect to the findings of the literature.

We are going to elaborate more on this soon. The second result, as well in line with Eggertsson

and Woodford (2004), is the use of the tax policy to stabilize the economy. Note that in the

23Appendix E provides details on the calibration used.
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Figure 2: Comparison between optimal policy, optimal policy with constant liquidity, and sub-optimal rules.
Impulse responses follow a negative shock to the natural rate of interest, lowering it to −4% at annual rates for 12
quarters. The output gap is expressed in percent; inflation and interest rates are in percent and annualized. Real
liquidity is in percent deviations from the steady state. The tax rate is in percentage points and shown as deviations
from the steady-state value.

case of disturbances not severe enough for the zero lower bound to bind, the tax gap, τ̃ − τ̃∗,

would not move at all. Instead, in the case of a larger shock, optimal policy involves raising tax

rates during the liquidity trap, while committing to cut them later and more around the time the

shock has vanished. As in Eggertsson and Woodford (2004), the tax rate operates through the AS

equation and its increase acts to push up inflation at the early stage of the liquidity trap, when

the deflationary pressures are stronger, while putting downward pressure when the shock vanishes.

The last feature of optimal policy is the path followed by liquidity. As it is shown in the Figure,

optimal policy requires a lower increase in liquidity with respect to the sub-optimal policy. The

main reason for this counter-intuitive result is in the success of the optimal policy in stabilizing

inflation and output. Indeed, the fall in the output gap under the sub-optimal rules produces lower

revenues from taxes, which lead to a large accumulation of public liabilities. An interesting feature

is the path of liquidity under optimal policy. Whereas the initial fall is due to the rise in the tax

rate, liquidity progressively increases to reach its peak just one quarter after the shock vanishes.

The withdrawal starts at the same time and in a faster way than the accumulation to reach the

initial level of liquidity exactly when the interest rate normalizes.

We now elaborate more on the characteristics of the optimal policy by comparing it with another

sub-optimal policy that we label “constant liquidity policy.” In this policy framework, fiscal policy

adjusts the tax gap to fully stabilize liquidity at its steady-state level, while the monetary authority

minimizes the loss function (41) subject to the same constraints as in the general optimal policy

problem. However, the monetary authority takes as given the path of fiscal variables, τ̃ − τ̃∗,

and assumes that the government’s intertemporal solvency is guaranteed by fiscal policy. This

formulation allows us to characterize how optimal monetary policy would respond to shocks in an
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Figure 3: Comparison between optimal policy, optimal policy with constant liquidity, and sub-optimal rules, under
high money-market spread. Impulse responses follow a negative shock to the natural rate of interest, lowering it to
−4% at annual rates for 12 quarters. Output gap is expressed in percent; inflation and interest rates are in percent
and annualized. Real liquidity is shown in percent deviations from the steady state. The tax rate is in percentage
points and expressed as deviations from its steady-state value.

environment where liquidity does not play an active role.

Figure 2 adds the “constant liquidity policy” to the two policies of Figure 1. The figure

illustrates the costs associated with keeping liquidity constant in terms of output and inflation

stabilization. These costs are particularly pronounced for output, given that liquidity has a direct

and immediate effect on aggregate demand. Interestingly, the fiscal policy required to maintain

constant liquidity—namely, an increase in the tax rate during a liquidity trap—can also help

mitigate the disinflationary pressures caused by the shock, due to its effect on the aggregate supply

(AS) equation.

This coincidence helps explain why the zero interest rate policy in the “constant liquidity

policy” framework is not maintained for a longer horizon to offset the absence of active liquidity

management. The tax adjustment partially substitutes for the missing liquidity response, reducing

the need for extended monetary accommodation.

Higher Spread in Money Markets

In the previous analysis, the parameter ν, which captures the spread in money markets between

liquid and illiquid securities, was calibrated to the average spread between Aaa corporate bonds

and Treasury bonds at ten-year maturity in the U.S. economy over the 1971–2005 period. This

corresponds to a spread of 1.25% at annual rates. According to the aggregate demand equation

(42), a one-percent, once-and-for-all increase in liquidity raises output – everything else equal –

by q−1
y ρ−1ν percentage points. Given qy = 0.3143, ργ = 0.21, and ν = 0.003125, this implies an

output increase of only 0.047 percentage points.

Figure 3 considers instead a spread of 4%, which is more in line with the values observed at the

onset of the 2007–2008 financial crisis across several credit market indicators. The figure compares
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Figure 4: Comparison between optimal policy, optimal policy with constant liquidity, and sub-optimal rules, when
λy/λπ is fifty times higher than the benchmark calibration and the money-market spread is high. Impulse responses
following a negative shock to the natural rate of interest, which lowers it to -4% at annual rates for 12 quarters.
Output gap is in %, inflation and interest rates are in % annualized, real liquidity is in % deviations from steady
state, and the tax rate is in percentage points, measured as deviations from steady state.

optimal policy to sub-optimal rules and to the “constant liquidity policy” analyzed in Figure 2.

A key difference in the optimal policy, relative to the previous case, lies in the path of liquidity:

liquidity now increases immediately at the start of the trap, supported by a reduction in the tax

rate – unlike the increase observed in Figure 2. Liquidity then gradually rises, peaking before the

shock dissipates, and is withdrawn progressively – though rapidly – after the policy rate lifts off.

By the time interest rates return to normal, most of the excess liquidity has already been absorbed.

Figure 3 also shows that the duration of the zero lower bound under the optimal policy is

shorter than in the baseline case of Figure 2, though still longer than the duration of the shock.

The shorter zero lower bound episode reflects the more effective use of liquidity in stabilizing

the economy. In contrast, under the “constant liquidity policy,” the interest rate remains at the

zero lower bound for one additional quarter to compensate for the absence of an active liquidity

response.

Larger Weight on Output-Gap Stabilization

The final experiment is motivated by the observation that liquidity primarily affects aggregate

demand, and thus output. The moderate use of liquidity seen in the previous experiments may

stem from a high relative weight on inflation stabilization in the policymaker’s loss function, which

reduces the incentive to actively use liquidity.

In Figure 3, the ratio λy/λπ was set at 0.002. We now consider an extreme case in which this

ratio is fifty times higher, while keeping the higher value for ν. Figure 4 displays the resulting

impulse responses.

Several features are worth highlighting. Under the revised calibration, optimal policy delivers

greater stabilization of the output gap, with a clearer divergence from the “constant liquidity
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policy.” The optimal policy now calls for a rapid and sizable increase in liquidity. Liquidity injection

begins early in the trap and is nearly fully withdrawn by the time policy rates normalize. The

duration of the zero lower bound episode coincides with the duration of the shock. Unlike earlier

cases, there is no need to signal a prolonged period of zero interest rates, since the use of liquidity

sufficiently stabilizes output.

In contrast, the “constant liquidity policy” still relies on an extended stay at the zero lower

bound to compensate for the absence of liquidity tools, yet it is far less effective in stabilizing the

output gap. Finally, note that inflation – being less costly in welfare terms under this calibration–

remains above target throughout the liquidity trap episode.

8 Conclusion

We have proposed a new framework for monetary policy analysis that encompasses, as a special

case, the Neo-Wicksellian paradigm. The nominal interest rate relevant for consumption/saving

decisions can only be controlled by the central bank’s simultaneous targeting of the interest rate on

reserves and their quantity. The Neo-Wicksellian model is nested when liquidity is fully satiated.

The new framework shows the relevance of the monetary/fiscal policy mix in controlling infla-

tion and output. We have applied it to the study of optimal policy in a liquidity trap, showing the

role of tax policy and liquidity in influencing the optimal response of the policy rate to a natural

real interest rate shock.

In this version, we have focused on the liquidity channel as the key mechanism through which

reserve policies are effective. In subsequent research it would be interesting to study the interplay

between the credit channel, as in Benigno and Benigno (2021), and the liquidity channel emphasized

in this work.

Finally, the model has been kept as simple as possible for tractability and to compare it with

existing analysis in the literature. It requires thorough extension in order to provide realistic

quantitative analysis.
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[7] Benigno, Pierpaolo, and Salvatore Nisticò. 2017. Safe Assets, Liquidity and Monetary Policy.

American Economic Journal: Macroeconomics 9(2): 182–227.

[8] Benigno, Pierpaolo, and Michael Woodford. 2003. Optimal Monetary and Fiscal Policy: A

Linear-Quadratic Approach. NBER Macroeconomics Annual 18: 271–333.

[9] Bigio, Saki, and Yuliy Sannikov. 2021. A Model of Credit, Money, Interest, and Prices. NBER

Working Paper 28540.

[10] Calvo, Guillermo. 1978. On the Time-Consistency of Optimal Policy in a Monetary Economy.

Econometrica 46(6): 1411–1428.

[11] Canzoneri, Matthew, Behzad Diba, and Robert Cumby. 2017. Should the Federal Reserve Pay

Competitive Interest on Reserves? Journal of Money, Credit and Banking 49(4): 663–693.

[12] Canzoneri, Matthew, Behzad Diba, Robert Cumby, and David López-Salido. 2008. Monetary
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A Log-linear approximation of the equilibrium conditions

Considering first the AD demand side of the model, we have the following first-order approximations

of the equilibrium conditions (21), (22) and (20)

(1− ν )̂ıQt = (ργ − ν )̂ıRt + (1− ργ )̂ı
B
t − νρ̂γ,t (A.1)

q̂t = qyŶt − qi(̂ı
B
t − ı̂Qt ) + qξ ξ̂q,t (A.2)

EtŶt+1 = Ŷt + σ(̂ıBt − Et(πt+1 − π)− r̃nt ) (A.3)

in which we have defined variables with hat as the log-deviations of the respective variables with

respect to the steady state; πt ≡ lnPt/Pt−1, r̃
n
t = ξ̂t − Etξ̂t+1 π ≡ lnΠ, σ ≡ −Uc/(UccY ),

σq ≡ −Vq/(Vqqq), qy ≡ σq/σ, qi ≡ (1− ν)σq/ν, qξ ≡ σq, with ν = Vq/Uc in which the derivatives of

the function V (·) and U(·) are evaluated at the steady state.

We now turn to the approximation of the AS equation, given by (26) to (28). We obtain

(πt − π) = κ(Ŷt + ψτ τ̃t) + βEt(πt+1 − π), (A.4)

with

κ ≡ (1− α)(1− αβ)(σ−1 + η)

α(1 + θη)

ψτ =
1

(1− τ)(η + σ−1)
.

Finally note that we can derive the intertemporal resource constraint of the economy starting from

the flow budget constraint of the government:

Bg
t

Pt
=

(1 + iRt−1)

Πt

Bg
t−1

Pt−1
− (τtYt − Tt).

Defining bgt ≡ Bg
t /Pt, we can write

bgt =
(1 + iRt−1)

Πt
bgt−1 − (τtYt − Tt)

and therefore
1 + iRt
1 + iBt

bgt +
iBt − iRt
1 + iBt

bgt =
1 + iRt−1

Πt
bgt−1 − (τtYt − Tt).

Since
1

1 + iBt
= βEt

(
Uc(Yt+1)ξt+1

Uc(Yt)ξt

1

Πt+1

)
we can iterate the equation forward using the transversality condition of the households’ problem
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to obtain

(1 + iRt−1)

Πt
Uc(Yt)ξtb

g
t−1 = Et

∞∑
T=t

βT−tUc(YT )ξT

[
(τTYT − TT ) +

iBT − iRT
1 + iBT

bgT

]
,

which can also be written as (29). Note that

1 + iQt
1 + iBt

− 1 = ργ,t

(
1 + iRt
1 + iBt

− 1

)
and

1− 1 + iQt
1 + iBt

=
ξq,tVq (qt)

Uc (Yt)
,

therefore (
1− 1 + iRt

1 + iBt

)
=
ξq,t
ργ,t

Vq (qt)

Uc (Yt)
.

We can then write:

(1 + iRt−1)

Πt
Uc(Yt)ξtb

g
t−1 = Et

∞∑
T=t

βT−t
[
Uc(YT )ξT (τTYT − TT ) + ξT ξq,TVq(qT )qT

]
. (A.5)

A first-order approximation of this constraint implies that

b̂gt−1 − (πt − π)− σ−1Ŷt + ı̂Rt−1 = [byŶt + ϱτ̃t − ϱT̃t + bξ ξ̂q,t + bq(b̂
g
t − ρ̂γ,t)]

+βEt[b̂
g
t − (πt+1 − π)− σ−1Ŷt+1 + ı̂Rt − r̃nt ],

in which T̃t = (Tt − T )/Y, we have used q̂t = b̂gt − ρ̂γ,t as a log-linear approximation of (??), and

δ = Y/q

ϱ =
βδ

ρ(1− ν/ργ)

ω =
(τ − g)δ

(τ − g)δ + ν

by = (ϱτ − (1− β)ωσ−1)

bq = (1− β)(1− ω)(1− σ−1
q )

bξ = (1− β)(1− ω).

B Proof of Proposition 4

Note that there are two solutions of (40). At qt ≥ q̄, all derivatives of the function V (·) are zero at

and above the satiation point of liquidity. Since taxation is distortionary and reduces output, it is

optimal to set the lowest possible level of liquidity i.e. qt = q̄. In this equilibrium, the tax rate has
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to satisfy the resource constraint (38) in which Wt0 is evaluated at the candidate equilibrium:

(1− β)

β
ργ q̄ = Y (τ̄)(τ̄ − g). (B.6)

Since the revenues derived from taxes, τY (τ), exhibit a Laffer-curve behavior, there exists a solution

provided q̄ ≤ qmax, for an appropriately defined qmax; τ̄ is the value of the tax rate in this steady-

state equilibrium.

In the second equilibrium, equation (40) implies that qt = q∗ < q̄ with q∗ given by:

Vq(q
∗) = − λ

1 + λ
Vqq(q

∗)q∗. (B.7)

The solution should also satisfy the resource constraint (38) in which Zt0 is again appropriately

evaluated at the equilibrium value. Therefore:

(1− β)ργq
∗ (1 + iR∗)

Π
= Y (τ∗)(τ∗ − g) +

Vq (q
∗) q∗

Y (τ∗)−σ−1 .

Using the steady-state equilibrium relationships for 1 + iR∗ and 1 + iB∗, we obtain

1 + iR∗

1 + iB∗ = 1− 1

ργ

Vq (q
∗)

Uc(Y ∗)

and

1 + iB∗ =
Π

β
,

which can be used to rewrite the above equation as

(1− β)

β
ργq

∗ = Y (τ∗)(τ∗ − g) +
1

β

Vq (q
∗) q∗

Y (τ∗)−σ−1 . (B.8)

The optimal q∗ and τ∗ solve (39), (B.7) and (B.8) together with the lagrange multiplier λ.

C Proof of Proposition 5

Set the following assumptions on the model parameters: µθ = 1, η = 0, σ = 1 and g = 0. The set

of first-order conditions to obtain the steady-state equilibrium for Y, τ , q is given by

Y = 1− τ, (C.9)

λ =
τ

1− τ
, (C.10)

τ(1− τ) + (1− τ)
Vq(q)q

β
=

(1− β)

β
ργq, (C.11)

Vq(q) = −τVqq(q)q. (C.12)
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Note that
Vq(q) =

1
q −

1
q∗ for q < q̄

= 0 for q ≥ q̄

Vqq(q) = − 1
q2

for q < q̄

= 0 for q ≥ q̄
.

The above set of equations has an equilibrium with full satiation of liquidity, when q ≥ q̄,

in which case Vq(q) = Vqq(q) = 0, see equation (C.12). Therefore the tax rate is determined by

equation (C.11)

τ̄(1− τ̄) =
(1− β)

β
ργ q̄,

for which τ̄ solves the quadratic equation

(τ̄)2 − τ̄ +
(1− β)

β
ργ q̄ = 0,

which has the lowest root given by

τ̄ =
1−

(
1− 4 (1−β)

β ργ q̄
) 1

2

2
.

Note, however, that the above set of equations has also another solution in which q∗ < q̄. Equation

(C.12) implies that
1− τ∗

q∗
=

1

q̄

and so q∗ = (1− τ∗)q̄. Therefore, equation (C.11) implies

τ∗(1− τ∗) + (1− τ∗)
Vq(q

∗)q∗

β
=

(1− β)

β
(1− τ∗)ργ q̄. (C.13)

Since

Vqq
∗ = 1− q∗

q̄
= τ∗

we obtain from (C.13) that

τ∗ =
1− β

1 + β
ργ q̄.

Note, moreover, that we can write (C.13) as

1 + β

β
τ∗(1− τ∗) = τ̄(1− τ̄)(1− τ∗)

therefore

τ∗ =
β

1 + β
τ̄(1− τ̄) <

1

2
τ̄
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Let’s compare welfare across the two equilibria. Note that utility is of the form

U = lnY − Y + ln
q

q̄
− q

q̄

In the equilibrium with full satiation of liquidity we obtain that

Ū = ln(1− τ̄)− (1− τ̄)− 1

In the other equilibrium we have that

U∗ = 2[ln(1− τ∗)− (1− τ∗)]

To prove the result, let’s consider the difference

U∗ − Ū = 2 ln(1− τ∗)− ln(1− τ̄) + 2τ∗ − τ̄

To have

U∗ > Ū

it should be that

ln(1− τ∗) + τ∗ >
ln(1− τ̄) + τ̄

2
.

Use the result that τ∗ < τ̄/2, and note that ln(1− τ) + τ is decreasing with τ , therefore

ln(1− τ∗) + τ∗ > ln
(
1− τ̄

2

)
+
τ̄

2
.

Moreover,

ln
(
1− τ̄

2

)
>

ln(1− τ̄)

2
.

It follows that

ln(1− τ∗) + τ∗ > ln
(
1− τ̄

2

)
+
τ̄

2
>

ln(1− τ̄) + τ̄

2
,

concluding the proof.

Consider now the case: µθ = 1, η = 0, σ = 1 and g > 0. The set of first-order conditions to

obtain the steady-state equilibrium for Y, τ , q is given by

Y = 1− τ, (C.14)

λ =
τ

1− τ − g
, (C.15)

(τ − g)(1− τ) + (1− τ)
Vq(q)q

β
=

(1− β)

β
ργq, (C.16)

Vq(q) = − τ

1− g
Vqq(q)q. (C.17)
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Note that in the optimal solution

q∗ =
1− g − τ∗

1− g
q̄

and therefore

Vqq
∗ = 1− q∗

q̄
=

τ∗

1− g
.

We can then write (C.16) as

(τ∗ − g) +
τ∗

β(1− g)
=

(1− β)

β

ργq
∗

1− τ∗
.

Note that equation (B.8) can be rewritten as

(1− β)

β

ργq
∗

1− τ∗
= (τ∗ − g) +

τ∗

β(1− g)
.

In the previous expression, the second term on the right hand side represents the resources obtained

from liquidity services, which are proportional to the tax rate τ∗. In the limit when ργ goes to

zero, then

τ∗ −→ β(1− g)g

1 + β(1− g)

while τ̄ −→ g.

D Optimal policy problem

In this Appendix, we consider the optimal policy problem. The objective is the maximization of

utility

Et0

∞∑
t=t0

βt−t0ξt

[
C1−σ−1

t

1− σ−1
−1

0

(Ht(j))
1+η

1 + η
dj + ξq,tV (qt)

]
,

in which
V (q) = ln

(
q
q̄

)
− q

q̄ for q < q̄

= −1 for q ≥ q̄
.

Note that in equilibrium we can write the above utility as

Et0

∞∑
t=t0

βt−t0ξt

[
Y 1−σ−1

t

1− σ−1
+ ξq,tV (qt)−

Y 1+η
t

1 + η
∆t,

]

given the definition of ∆t

∆t ≡
∫ 1

0

(
pt(j)

Pt

)−θ(1+η)

dj,

which can be written recursively as

∆t = α∆t−1

(
Πt

Π

)θ(1+η)

+ (1− α)

(
1− α

(
Πt
Π

)θ−1

1− α

) θ(1+η)
θ−1

. (D.18)
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The optimal policy problem involves choosing stochastic sequences {Yt, qt,∆t, τt,Πt, Ft,Kt}∞t=t0

that maximize utility under the constraint (D.18), the AS schedule given by (26)–(28), and the

intertemporal resource constraint of the economy (A.5) in which

Zt0 =
(1 + iRt0−1)

Πt0

Uc(Yt0)ξt0b
g
t0−1.

The maximization problem considers as given the stochastic sequences
{
ξt, ξq,t, Tt, ργ,t

}∞
t=t0

, initial

condition ∆t0−1 and constraints Ft0 = F̄t0 , Kt0 = K̄t0 , Zt0 = Z̄t0 that are such to make the optimal

policy problem recursive.

We analyze the optimal policy problem through linear-quadratic approximations, in line with

Benigno and Woodford (2003). First, we analyze the optimal steady state, then we build a second-

order approximation to the policy objective function and study the optimal policy problem from

a linear-quadratic perspective.

D.1 The deterministic steady state

Here we compute the steady state of the optimal monetary and fiscal policy problem in a de-

terministic problem in which the exogenous disturbances ξt, ξq,t, ργ,t and Tt take constant values

ξt= ξq,t = 1, ργ,t = ργ and Tt = T , for all t ≥ t0.

We thus consider the problem of maximizing

Ut0 =
∞∑

t=t0

βt−t0

(
Y 1−σ−1

t

1− σ−1
− Y 1+η

t

1 + η
∆t + V (qt)

)
(D.19)

subject to the constraints

Ktp

(
Πt

Π

) 1+ηθ
θ−1

= Ft, (D.20)

Ft = (1− τt)Y
1−σ−1

t + αβ

(
Πt+1

Π

)θ−1

Ft+1, (D.21)

Kt = µθY
1+η
t + αβ

(
Πt+1

Π

)θ(1+η)

Kt+1, (D.22)

Zt0 =

∞∑
t=t0

βt−t0(τtY
1−σ−1

t − TtY
−σ−1

t + Vq(qt)qt), (D.23)

∆t = α∆t−1

(
Πt

Π

)θ(1+η)

+ (1− α)p

(
Πt

Π

)− θ(1+η)
1−θ

, (D.24)

given specified initial conditions ∆t0−1, Ft0 , Kt0 , Zt0 where we have defined

p

(
Πt

Π

)
≡
(
1− α(Πt/Π)

θ−1

1− α

)
.

The maximization of utility, in the optimal policy problem, is subject to the AS equation, given
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by equations (D.19) – (D.21), to the intertemporal resource constraint, equation (D.22) given the

law of motion of ∆t.

We introduce Lagrange multipliers ϕ1,t through ϕ5,t corresponding to constraints (D.20) through

(D.24) respectively. Note that the lagrange multiplier ϕ4 is constant. We also introduce multipliers

dated t0 corresponding to the constraints implied by the initial conditions Ft0 , Kt0 ; the latter

multipliers are normalized in such a way that the first-order conditions take the same form at

date t0 as at all later dates. The first-order conditions of the maximization problem are then the

following. The one with respect to Yt is

Y −σ−1

t −∆tY
η
t − (1− τt)(1− σ−1)Y −σ−1

t ϕ2,t − (1 + η)µθY
η
t ϕ3,t + τtY

−σ−1

t ϕ4

−σ−1Y −σ−1

t τtϕ4 + σ−1Y −σ−1−1
t Ttϕ4 = 0; (D.25)

that with respect to ∆t is

−Y
1+η
t

1 + η
+ ϕ5,t − αβ

(
Πt+1

Π

)θ(1+η)

ϕ5,t+1 = 0; (D.26)

that with respect to Πt is

1 + θη

θ − 1
p

(
Πt

Π

) 1+θη
θ−1

−1

pπ

(
Πt

Π

)
Ktϕ1,t − α(θ − 1)

(
Πt

Π

)θ−2 Ft

Π
ϕ2,t−1

−θ(1 + η)α

(
Πt

Π

)θ(1+η)−1 Kt

Π
ϕ3,t−1+

−θ(1 + η)α∆t−1

(
Πt

Π

)θ(1+η)−1 1

Π
ϕ5,t −

θ(1 + η)

θ − 1
(1− α)p

(
Πt

Π

) (1+ηθ)
θ−1

pπ

(
Πt

Π

)
ϕ5t = 0; (D.27)

that with respect to τt is

ϕ2,t + ϕ4 = 0; (D.28)

that with respect to Ft is

−ϕ1,t + ϕ2,t − α

(
Πt

Π

)θ−1

ϕ2,t−1 = 0; (D.29)

that with respect to Kt is

p

(
Πt

Π

) 1+ηθ
θ−1

ϕ1t + ϕ3t − α

(
Πt

Π

)θ(1+η)

ϕ3,t−1 = 0; (D.30)

that with respect to qt is

Vq(qt) = −ϕ4(Vq(qt) + Vqq(qt)qt). (D.31)

We search for a solution to these first-order conditions in which Πt = Π, ∆t = ∆, Yt = Y , τt = τ,

and qt = q at all times. A steady-state solution of this kind also requires that the Lagrange

multipliers take constant values. We furthermore conjecture the existence of a solution in which

∆ = 1, p(·) = 1, pπ(·) = −(θ − 1)α/[(1 − α)Π], and K = F . Using these substitutions, we find
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that (the steady-state version of) each of the first-order conditions (D.25) – (D.31) is satisfied if

the steady-state values satisfy

1− Y η+σ−1

t = [(1− σ−1) + σ−1g − (1 + η)µθY
η+σ−1

t ]ϕ2, (D.32)

(1− αβ)ϕ5 =
Y 1+η

1 + η
,

ϕ4 = −ϕ2, (D.33)

ϕ1 = (1− α)ϕ2,

ϕ3 = −ϕ2,

Vq(q) = −ϕ4(Vq(q) + Vqq(q)q). (D.34)

We have defined g = T/Y. Similarly, (the steady-state versions of) the constraints (D.20) –

(D.24) are satisfied if
(1− τ)

µθ
= Y η+σ−1

, (D.35)

(τY − gY ) + Vq(q)qY
σ−1

= (1− β)ργq
(1 + iR)

Π
, (D.36)

F = K = (1− αβ)−1µθY
1+η,

Z =
Y −σ−1

(1 + iR)ργq

Π
.

We can use (D.35) and (D.33) into (D.32) to obtain

ϕ4 =
1− (1−τ)

µθ

(1 + η)(1− τ)− (1− σ−1)− σ−1g
(D.37)

which is positive provided τ < (η + σ−1(1− g))/(1 + η). Note that the multiplier ϕ4 is function of

τ and that output is a decreasing function of τ using (D.35).

Note that in the steady state

1 + iB =
Π

β

1 + iQ

1 + iB
= 1− Vq(q)

Uc(Y )

1 + iQ = ργ(1 + iR) + (1− ργ)(1 + iB).

Therefore
(1 + iR)

Π
=

1 + iR

1 + iB
(1 + iB)

Π
=

(
1− Vq(q)Y

σ−1

ργ

)
1

β
,

and we can write (D.36) as

(τ − g)Y (τ) +
Vq(q)q

βY (τ)−σ−1 =
(1− β)

β
ργq
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which together with

Vq(q) = −ϕ4(τ)(Vq(q) + Vqq(q)q).

represents a set of two equations to solve for q and τ . We have discussed extensively the solution

in Section 6. The remaining equations can then be solved (uniquely) for K = F and for Z.

D.2 A second-order approximation to utility

As a first step to compute optimal policy through linear-quadratic approximations, we take a

second-order approximation to the households’ utility

Ut0 = Et0

{ ∞∑
t=t0

βt−t0ξt

[
Y 1−σ−1

t − 1

1− σ−1
− Y 1+η

t

1 + η
∆t + ξq,tV (qt)

]}
. (D.38)

Note that

ξt

[
Y 1−σ−1

t − 1

1− σ−1
+ ξq,tV (qt)−

Y 1+η
t

1 + η
∆t

]
= UcY

[
Ŷt +

1

2

(
1− 1

σ

)
Ŷ 2
t

]
+ UcY Ŷtξ̂t −

+Vqq

[
q̂t +

1

2

(
1− 1

σq

)
q̂2t

]
+ Vqqq̂tξ̂d,t −HlY Ŷtξ̂t

−HlY

[
Ŷt +

1

2
(1 + η)Ŷ 2

t

]
−H(Y )(∆t − 1) +O(||ξ||3),

where O(||ξ||3) collects terms of order higher than the second and where we have used the following

approximation: (
Yt − Y

Y

)
= Ŷt +

1

2
Ŷ 2
t +O(||ξ||3),

and similarly for qt − q. Note that we have defined ξd,t = ξq,tξt and σq ≡ −Vq/Vqqq in which

derivatives are evaluated at the steady state. Note that in the steady Hl = (1− Φ)Uc where

Φ ≡ 1− (1− τ)

µθ
< 1

measures the inefficiency of steady-state output Y . We can then write

ξt

[
Y 1−ρ
t − 1

1− ρ
+ ξq,tV (qt)−

Y 1+η
t

1 + η
∆t

]
= UcY

[
ΦŶt +

1

2

(
1− 1

σ

)
Ŷ 2
t

]
+ΦUcY Ŷtξ̂t −

+Vqq

[
q̂t +

1

2

(
1− 1

σq

)
q̂2t

]
+ Vqqq̂tξ̂d,t

−1

2
(1− Φ)UcY (1 + η)Ŷ 2

t − (1− Φ)

1 + η
UcY (∆t − 1)

+O(||ξ||3),
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and in a compact way

Ut0 = UcY · Et0

∞∑
t=t0

βt−t0 [ΦŶt −
1

2
uyyŶ

2
t +ΦŶtξ̂t − u∆∆̂t +

+νδ−1

[
q̂t(1 + ξ̂d,t) +

1

2

(
1− σ−1

q

)
q̂2t

]
+ t.i.p. +O(||ξ||3), (D.39)

in which t.i.p. denotes terms independent of policy and, moreover, we have defined

uyy ≡ −(1− σ−1) + (1− Φ)(1 + η),

u∆ ≡ (1− Φ)

1 + η
,

and used the definitions ν ≡ Vq/Uc and δ ≡ Y/q.

We now take a second-order Taylor expansion of (D.18) around the steady state in which ∆t = 1

and Πt = Π to obtain

∆̂t = α∆̂t−1 +
α

1− α
θ(1 + η)(1 + ηθ)

(πt − π)2

2
+ t.i.p.+O(||ξ||3).

Now note that

∆̂t = αt−t0+1∆̂t0−1 +
1

2

αθ

(1− α)
(1 + η)(1 + ηθ)

t∑
s=t0

αt−s (πs − π)2 +O(||ξ||3)

and therefore

∞∑
t=t0

βt−t0∆̂t =
1

2

αθ(1 + η)(1 + ηθ)

(1− α)(1− αβ)

∞∑
t=t0

βt−t0(πt − π)2 +O(||ξ||3), (D.40)

neglecting initial condition ∆̂t0−1.

We substitute (D.40) into (D.39) to obtain

Ut0 = Y Uc · Et0

∞∑
t=t0

βt−t0 [ΦŶt −
1

2
uyyŶ

2
t +ΦŶtξ̂t −

1

2
uπ(πt − π)2 +

+νδ−1

[
q̂t(1 + ξ̂d,t) +

1

2

(
1− σ−1

q

)
q̂2t

]
+ t.i.p. +O(||ξ||3),

where we have further defined

κ ≡ (1− αβ)(1− α)

α

(η + σ−1)

(1 + ηθ)
, uπ ≡ θ(η + σ−1)(1− Φ)

κ
.
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We can also write it as

Ut0 = Y Uc · Et0

∞∑
t=t0

βt−t0 [a′xxt −
1

2
x′tAxxt −

1

2
x′tAεεt −

1

2
aπ(πt − π)2] +

+t.i.p. +O(||ξ||3),

where we have used the following definitions

xt ≡


τ̂t

Ŷt

q̂t

 ,

εt ≡


ξ̂t

T̂t

ξ̂d,t


a′x ≡

[
0 Φ νδ−1

]

Ax ≡


0 0 0

0 −(1− σ−1) + (1− Φ)(1 + η) 0

0 0 −νδ−1
(
1− σ−1

q

)


Aε ≡


0 0 0

−Φ 0 0

0 0 −νδ−1


aπ ≡ θ(η + σ−1)(1− Φ)

κ
.

D.3 A second-order approximation of the AS equation

We follow Benigno and Woodford (2003) to obtain that a second-order approximation of the AS

equation is:

Vt =
1− α

α

(1− αβ)

(1 + θη)

(
(η + σ−1)Ŷt + ωτ τ̂t +

1

2

ωτ

(1− τ̄)
τ̂2t +

1

2
[(ξ̂t + (1 + η)Ŷt)

2−

(−ωτ τ̂t + ξ̂t + (1− σ−1)Ŷt)
2]
)
+
θ(1 + η)

2
(πt − π)2 + βEtVt+1 + t.i.p.+O(||ξ||3).

In a more compact way, we can write

Vt = κ(c′xxt +
1

2
x′tCxxt + x′tCεεt +

1

2
cπ(πt − π)2) + βEtVt+1

+t.i.p.+O(||ξ||3), (D.41)
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We have defined

ωτ ≡ τ/(1− τ)

ψ ≡ ωτ/(η + σ−1),

c′x ≡
[
ψ 1 0

]
,

Cx ≡


ψ (1− σ−1)ψ 0

(1− σ−1)ψ (2 + η − σ−1) 0

0 0 0

 ,

Cε ≡


ψ 0 0

1 0 0

0 0 0

 ,
cπ ≡ θ(1 + η)

κ
.

We can also integrate (D.41) forward from time t0 to obtain

Vt0 = Et0

∞∑
t=t0

βt−t0κ(c′xxt +
1

2
x′tCxxt + x′tCεεt +

1

2
cπ(πt − π)2)

+t.i.p.+O(||ξ||3). (D.42)

Note that in a first-order approximation, (D.41) can be written as simply

(πt − π) = κ[Ŷt + ψτ̂t] + βEt(πt+1 − π), (D.43)

since Vt = (πt − π) +O(||ξ||2).

D.4 A second-order approximation to the government’s intertemporal budget

constraint

We now derive a second-order approximation to the intertemporal government budget constraint

(A.5), which can be written as

Zt = Et

∞∑
T=t

βT−t[ξTY
1−σ−1

T τT − ξTY
−σ−1

T TT+ξd,TV q(qT )qT ], (D.44)

and

Zt =
(1 + iRt−1)b

g
t−1

Πt
ξtY

−σ−1

t . (D.45)
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First, we take a second-order approximation of the term ξtY
1−σ−1

t τt obtaining

ξtY
1−σ−1

t τt = Y 1−σ−1
τ + (1− σ−1)Y −σ−1

τ Ỹt + Y 1−σ−1
τ̃t + Y 1−σ−1

τ ξ̃t +

−1

2
σ−1(1− σ−1)Y −σ−1−1τ Ỹ 2

t + (1− σ−1)Y −σ−1
Ỹtτ̃t +

+(1− σ−1)Y −σ−1
τ Ỹtξ̃t + Y 1−σ−1

τ̃tξ̃t +O(||ξ||3),

= Y 1−σ−1
τ + (1− σ−1)Y 1−σ−1

τ Ŷt + Y 1−σ−1
τ

(
τ̂t +

1

2
τ̂2t

)
+ Y 1−σ−1

τ ξ̂t

+
1

2
(1− σ−1)2τY 1−σ−1

Ŷ 2
t + (1− σ−1)τY 1−σ−1

Ŷtτ̂t +

+(1− σ−1)Y 1−σ−1
τ Ŷtξ̂t + Y 1−σ−1

τ τ̂tξ̂t + t.i.p.+O(||ξ||3)

= Y 1−σ−1
τ + Y 1−σ−1

τ [(1− σ−1)Ŷt + τ̂t +
1

2
τ̂2t + ξ̂t +

1

2
(1− σ−1)2Ŷ 2

t

+(1− σ−1)Ŷtτ̂t + (1− σ−1)Ŷtξ̂t + τ̂tξ̂t] + t.i.p.+O(||ξ||3),

where a tilde variable denote the deviation of the variable with respect to the steady state. Con-

sidering a second-order approximation of the term

ξtY
−σ−1

t Tt = Y −σ−1
T − σ−1Y −σ−1−1T Ỹt + Y −σ−1 · T̃t + Y −σ−1

T · ξ̃t +

+
1

2
σ−1(1 + σ−1)Y −σ−1−2T · Ỹ 2

t − σ−1Y −σ−1−1 · ỸtT̃t +

−σ−1Y −σ−1−1T · Ỹtξ̃t +O(||ξ||3),

= Y −σ−1
T − σ−1Y −σ−1

T Ŷt + Y −σ−1
T · T̂t + Y −σ−1

T · ξ̃t

+
1

2
σ−2TY −σ−1

Ŷ 2
t − σ−1Y −σ−1

T · ŶtT̂t +

−σ−1Y −σ−1
T · Ŷtξ̂t + t.i.p.+O(||ξ||3)

= Y 1−σ−1
g + Y 1−σ−1

g[−σ−1Ŷt + T̂t + ξ̂t +
1

2
σ−2Ŷ 2

t

−σ−1ŶtT̂t − σ−1Ŷtξ̂t] + t.i.p.+O(||ξ||3),

We now take a second-order approximation of the term

ξd,tV q(qt)qt = Vqq + Vqqqq̃t + Vq q̃t + Vqqξ̃d,t+
1

2
(Vqqqq + 2Vqq)q̃

2
t + (Vq + Vqqq)q̃tξ̃d,t

+O(||ξ||3)

= Vqq + (Vqqq
2 + Vqq)q̂t + Vqqξ̂d,t +

1

2
(Vqqqq

3 + 3Vqqq
2 + Vqq)q̂

2
t +

+(Vqq + Vqqq
2)q̂tξ̂d,t + t.i.p.+O(||ξ||3),

= Vqq[1 + (1− σ−1
q )q̂t + ξ̂d,t +

1

2
(σ̃−1

q σ−1
q − 2σ−1

q + 1)q̂2t +

+(1− σ−1
q )q̂tξ̂d,t] + t.i.p.+O(||ξ||3)

in which we have defined 1 + σ̃−1
q = −Vqqqq/Vqq.
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We can then write

Z̃t = τ [(1− σ−1)Ŷt + τ̂t +
1

2
τ̂2t + ξ̂t +

1

2
(1− σ−1)2Ŷ 2

t + (1− σ−1)Ŷtτ̂t +

+(1− σ−1)Ŷtξ̂t + τ̂tξ̂t]− g[−σ−1Ŷt + T̂t + ξ̂t +
1

2
σ−2Ŷ 2

t

−σ−1ŶtT̂ rt − σ−1Ŷtξ̂t]

νδ−1[(1− σ−1
q )q̂t + ξ̂d,t +

1

2
(σ̃−1

q σ−1
q − 2σ−1

q + 1)q̂2t +

+(1− σ−1
q )q̂tξ̂d,t] + βEtZ̃t+1 + t.i.p.+O(||ξ||3)

and in a more compact way

Z̃t = [b′xxt + b′εεt +
1

2
x′tBxxt + x′tBεεt] + βEtZ̃t+1

+t.i.p.+O(||ξ||3) (D.46)

where Z̃t ≡ (Zt − Z̄)/(UcY ) and

b′x =
[
τ τ(1− σ−1) + gσ−1 νδ−1(1− σ−1

q )
]
,

b′ε =
[
(τ − g + νδ−1) −g 0

]

Bx =


τ τ(1− σ−1) 0

(1− σ−1) τ(1− σ−1)2 − gσ−2 0

0 0 νδ−1(σ̃−1
q σ−1

q − 2σ−1
q + 1)

 ,

Bξ =


τ 0 0

τ(1− σ−1) + σ−1g gσ−1 0

0 0 νδ−1(1− σ−1
q )

 .
Moreover integrating forward (D.46), we obtain that

Z̃t0 = Et0

∞∑
t=t0

βt−t0 [b′xxt +
1

2
x′tBxxt + x′tBεεt] + t.i.p. +O(||ξ||3), (D.47)

where we have moved εt in t.i.p.

Note that up to first-order terms, we can write

Z̃t =
{
[τ(1− σ−1) + gσ−1]Ŷt + τ τ̂t − gT̂t + (τ − g + νδ−1)ξ̂t)]

νδ−1ξ̂q,t + νδ−1(1− σ−1
q )q̂t

}
+ βEtZ̃t+1.

in which we have noted that ξ̂d,t = ξ̂t + ξ̂q,t. Note that Z̄ = (1 − β)−1(UcY )(τ − g + νδ−1) and
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Ẑt ≡ (Zt − Z̄)/Z̄ = Z̃t · (UcY/Z̄). Moreover note that

(1− β)

β
ργq

(
1− ν

ργ

)
= (τ − g)Y + νq

and therefore
(1− β)

β
ργδ

−1

(
1− ν

ργ

)
= (τ − g) + νδ−1.

It also follows that Z̄/UcY = β−1δ−1ργ(1− ν/ργ). Define ω ≡ (τ − g)/[(1− β)Z̄/(UcY )], therefore

νδ−1 = (1−ω)[(1−β)Z̄/(UcY )]. Define also ϱ ≡ UcY/Z̄ = βδρ−1
γ /(1−ν/ργ). Therefore, Ẑt = ϱZ̃t.

We can then write:

Ẑt = ϱτ̃t − ϱT̃t + (ϱτ − (1− β)ωσ−1)Ŷt +

+(1− β)[ξ̂t + (1− ω)ξ̂q,t + (1− ω)(1− σ−1
q )q̂t] + βEtẐt+1,

in which we have used the definition τ̃t = τt− τ and from now onwards T̃t = (Tt−T )/Y. Moreover

Ẑt ≡ b̂gt−1 − (πt − π)− σ−1Ŷt + ξ̂t + ı̂Rt−1

We can write

b̂gt−1 − (πt − π)− σ−1Ŷt + ı̂Rt−1 = [byŶt + ϱτ̃t − ϱT̃t + bξ ξ̂q,t + bq q̂t]

+βEt[b̂
g
t − (πt+1 − π)− σ−1Ŷt+1 + ı̂Rt − r̃nt ],

in which we have defined r̃nt = ξ̂t − Etξ̂t+1 and moreover

by ≡ (ϱτ − (1− β)ωσ−1),

bq ≡ (1− β)(1− ω)(1− σ−1
q ),

bξ ≡ (1− β)(1− ω).

D.5 A quadratic approximation to the policy objective function

Using the above derivations, we can now obtain a quadratic approximation to the policy objective

function. To this end, we combine equation (D.42) and (D.47) in a way to eliminate the linear

terms in (D.39). Indeed, we find ϑ1, ϑ2 such that

ϑ1b
′
x + ϑ2c

′
x = a′x ≡ [0 Φ νδ−1].

The solution is given by

ϑ1 = −Φ

Γ
,

ϑ2 =
Φ(1− τ)(σ−1 + η)

Γ
,
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where

Γ = (1− τ)(1 + η)− (1− σ−1(1− g)).

Note that the lagrange multiplier ϕ4, given in (D.37), is such that ϕ4 = −ϑ1 and, therefore, given

the first-order condition (D.34) it also follows that

ϑ1νδ
−1(1− σ−1

q ) = νδ−1.

We can, therefore, write

Et0

∞∑
t=t0

βt−t0ΦŶt = Et0

∞∑
t=t0

βt−t0 [ϑ1b
′
x + ϑ2c

′
x]xt =

−Et0

∞∑
t=t0

βt−t0 [
1

2
x′tDxxt + x′tDεεt +

1

2
dπ(πt − π)2]

+ϑ1Z̃t0 + ϑ2κ
−1Vt0 + t.i.p. +O(||ξ||3)

where

Dx ≡ ϑ1Bx + ϑ2Cx, etc.

Hence

Ut0 = ΩEt0

∞∑
t=t0

βt−t0

{
a′xxt −

1

2
x′tAxxt − x′tAεεt −

1

2
aπ(πt − π)2

}
+ t.i.p. +O(||ξ||3)

= −ΩEt0

∞∑
t=t0

βt−t0

{
1

2
x′t∆xxt + x′t∆εεt +

1

2
λπ(πt − π)2

}
+

+Xt0 + t.i.p. +O(||ξ||3)

= −ΩEt0

∞∑
t=t0

βt−t0

{
1

2
λyŶ

2
t − λgT̂tŶt + λq q̂

2
t +

1

2
λπ(πt − π)2

}
+Xt0 +

+t.i.p. +O(||ξ||3) (D.48)

In particular, we obtain that Ω = UcY and that

λy ≡ (1− Φ)(σ−1 + η) + Φ(σ−1 + η)
(1− τ)(1 + η)

Γ
+

Φ

Γ
σ−1g;

λq =
Φ

Γ
νδ−1σ−1

q (σ−1
q − σ̃−1

q )

λg =
Φ

Γ
gσ−1

moreover we have defined

λπ =
Φθ(1− τ)(σ−1 + η)(1 + η)

Γκ
+

(1− Φ)θ(σ−1 + η)

κ
.
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Finally,

Xt0 ≡ UcY · [ϑ1Z̃t0 + ϑ2κ
−1Vt0 ]

is a transitory component.

Therefore the loss function is given by

Lt0 = Et0

∞∑
t=t0

βt−t0

{
1

2
λyy

2
t +

1

2
λπ(πt − π)2 +

1

2
λqq

2
t

}
.

in which the output gap is defined by yt = Ŷt − Ŷ ∗
t with Ŷ ∗

t ≡ λ−1
y λgT̃t/g.

D.6 A linear-quadratic approximation of the optimal policy problem

Before solving the optimal policy problem in the LQ approximation, we discuss the model equilib-

rium conditions in a log-linear approximation. The AS equation is given by

(πt − π) = κ[Ŷt + ψτ̂t] + βEt(πt+1 − π)

which can be rewritten also as

(πt − π) = κ[yt + ψτ (τ̃t − τ̃∗t )] + βEt(πt+1 − π),

in which we have defined ψτ = ψ/τ and τ̃∗t = −ψ−1
τ Ŷ ∗

t .

The AD block is given by

EtŶt+1 = Ŷt + σ(̂ıBt − Et(πt+1 − π)− r̃nt ) (D.49)

q̂t = qyŶt − qi(̂ı
B
t − ı̂Dt ) + qξ ξ̂q,t (D.50)

(1− ν )̂ıDt = (ργ − ν )̂ıRt + (1− ργ )̂ı
B
t − νρ̂γ,t. (D.51)

in which we have defined a variable with a hat as the log-deviations of the variable with respect to

the steady state; πt ≡ lnPt+1/Pt, r̃
n
t = ξ̂t − Etξ̂t+1 π ≡ lnΠ, σ ≡ −Uc/(UccY ), σq ≡ −Vq/(Vqqq),

qy ≡ σ−1/σ−1
q , qi = (1− ν)/(νσ−1

q ), qξ = σq.

Combining (D.49)–(D.51), we obtain the AD equation

yt = (1− ρ−1
γ ν)Etyt+1 − σ(1− ρ−1

γ ν)(̂ıRt − Et(πt+1 − π)− rnt ) + q−1
y ρ−1

γ νb̂gt .

in which

rnt = r̃nt +
1

σ
EtŶ

∗
t+1 −

1

σ(1− ρ−1
γ ν)

Ŷ ∗
t −

ρ−1
γ ν

(1− ρ−1
γ ν)

(ξ̂q,t + (σ−1
q − 1)ρ̂γ,t).
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The intertemporal budget constraint of the government is given by

b̂gt−1 − (πt − π)− σ−1Ŷt + ı̂Rt−1 = Et

∞∑
T=t

βT−t[byŶT + ϱτ̃T − ϱT̃T + bq(b̂
g
t − ρ̂γ,t) + bξ ξ̂q,t − βr̃nT ]

which can be written as

b̂gt−1 − (πt − π)− σ−1yt + (̂ıRt−1 − rnt−1) = −ft + Et

∞∑
T=t

βT−t[byyt + ϱ(τ̃T − τ̃∗T ) + bq b̂
g
T ]

having define the fiscal-stress variable ft

ft = −Et

∞∑
T=t

βT−t[byŶ
∗
T + ϱτ̃∗T − ϱT̃T − βr̃nT + bξ ξ̂q,T − bqρ̂γ,T ]− rnt−1.

In the evaluation of the optimal policy when considering that the economy is hit by a shock to

the natural real rate, we assume a zero fiscal stress at all times, meaning that the transfer policy

adjusts so to keep ft = 0 at all times.

The optimal policy problem in a linear-quadratic approximation minimizes the quadratic loss

function

Lt0 = Et0

∞∑
t=t0

βt−t0

{
1

2
λyy

2
t +

1

2
λπ(πt − π)2 +

1

2
λqq

2
t

}
under the log-linear approximation of the equilibrium conditions:

(πt − π) = κ[yt + ψτ (τ̃t − τ̃∗t )] + βEt(πt+1 − π).

yt = (1− ρ−1
γ ν)Etyt+1 − σ(1− ρ−1

γ ν)(̂ıRt − Et(πt+1 − π)− rnt ) + q−1
y ρ−1

γ νb̂gt ,

b̂gt−1 − (πt − π)− σ−1yt + ı̂Rt−1 − rnt−1 = byyt + ϱ(τ̃t − τ̃∗t ) + bq b̂
g
t +

+βEt[b̂
g
t − (πt+1 − π)− σ−1yt+1 + ı̂Rt − rnt ].

First-order conditions with respect to Ŷt, πt, τ̂t, ı̂
R
t and b̂gt are given respectively by

λyyt − κϕ1,t + ϕ2,t − β−1(1− ρ−1
γ ν)ϕ2,t−1 − σ−1(ϕ3,t − ϕ3,t−1)− byϕ3,t = 0

λπ(πt − π) + ϕ1,t − ϕ1,t−1 − σ(1− ρ−1
γ ν)β−1ϕ2,t−1 − (ϕ3,t − ϕ3,t−1) = 0

−κψτϕ1,t − ϱϕ3,t = 0

σ(1− ρ−1
γ ν)ϕ2,t + β(Etϕ3,t+1 − ϕ3,t)− ϕ4,t = 0

λq q̂t − q−1
y ρ−1

γ νϕ2,t − bqϕ3,t + β(Etϕ3,t+1 − ϕ3,t) = 0
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in which ϕ4,t is the lagrange multiplier associated to the zero-lower bound constraint

(̂ıRt + ln(1 + iR)) ≥ 0

with ϕ4,t ≥ 0.

E Calibration

We calibrate the model parameters as in the following table:

Table 1: Calibration of parameters

β = 0.995 κ = 0.02

σ = 0.5 g = 0.2

η = 0.47 ν = 0.003125

θ = 10 Π = 1 + 0.02/4

ργ = 0.21

.

The intertemporal elasticity of substitution in consumption σ is set to 0.5; the inverse of the

Frisch elasticity of labor supply is set to η = 0.47; the elasticity of substitution among the varieties

of goods in the consumption basket is set to θ = 10; the slope of the AS equation is set to κ = 0.02.

All the above calibration is taken from Eggertsson and Woodford (2003). The gross inflation rate

Π is set to be consistent with an inflation target of 2% at annual rates. The rate of time preference

is set to β = 0.995 so that the steady-state real interest rate is at 2% at annual rates. The param-

eter ργ is calibrated at 0.21, which is the average of the ratio between liquid assets and deposit of

FDIC-Insured Commercial Banks and Savings Institutions in the U.S during the period 1984 Q1

to 2005 Q4. Data are taken from FRED Database. Liquid assets include U.S. Treasury Securities

(the series QBPBSTASSCUSTRSC), Federal Funds (the difference between those sold QBPB-

STASFEDREVREPO and those purchased QBPBSTLKFEDREPO), mortgage-backed securities

(QBPBSTASSCMRTSEC) and Cash and Due from Depositary Institution (QBPBSTASCSHDP).

Deposits are the series QBPBSTLKDP. The parameter g is set equal to 0.2, indicating a 20% of

public spending over GDP.

The spread between risk-free illiquid and liquid securities, ν, is calibrated as the average of

the Moody’s Seasoned Aaa Corporate Bond Yield Relative to Yield on 10-Year Treasury Constant

Maturity (series TB3MS from the FRED database), for the period 1991 M1 to 2005 M12. Since

this average is equal to 125 basis points at annualized rates, then ν = 0.003125.
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Note that
Vq(q) =

1
q −

1
q∗ for q < q̄

= 0 for q ≥ q̄

Vqq(q) = − 1
q2

for q < q̄

= 0 for q ≥ q̄
.

Therefore,

ν =
Vq(q)

Uc(Y )
=

(
1

q
− 1

q̄

)
Y σ−1

.

The following set of equations is solved to obtain q, Y, τ, τ̄ , q̄, Ȳ , λ

ν =

(
1

q
− 1

q̄

)
Y σ−1

(1− β)

β
ργ q̄ = Ȳ (τ̄ − g)

Ȳ =

(
(1− τ̄)

µθ

) 1
η+σ−1

Y =

[
(1− τ)

µθ

] 1
η+σ−1

λ =
1− (1−τ)

µθ

(1 + η)(1− τ)− (1− σ−1)− σ−1g

(τ − g)Y +
ν

β
=

(1− β)

β
ργq

λ

1 + λ
= 1− q

q̄
,

given the other parameters. The parameter δ is determined by δ = Y/q. The elasticity of substi-

tution σq is equal to

σq = − Vq
Vqqq

=

(
1− q

q̄

)
.

Moreover

1 + σ̃−1
q = −Vqqqq/Vqq = 2,

Therefore σ̃q = 1.

The following Table cointains the value of the parameters derived through the above procedure:
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Table 2: Derived parameters

q = 36.68 q̄ = 43.47

τ = 0.2415 Y = 0.8568

σq = 0.1562 σ̃q = 1

δ = 0.0234

,

The other parameters in the optimal policy problem can then be derived given their definitions:

qy = σq/σ

qξ = σq

ϱ =
βδ

ργ(1− ν/ργ)

Φ = 1− (1− τ)

µθ

ψτ =
1

(1− τ)

1

σ−1 + η

ω =
(τ − g)δ

(τ − g)δ + ν

Γ = (1− τ)(1 + η)− (1− σ−1(1− g))

λy ≡ (1− Φ)(σ−1 + η) + Φ(σ−1 + η)
(1− τ)(1 + η)

Γ
+

Φ

Γ
σ−1g

λq =
Φ

Γ
νϕ−1σ−1

q (σ−1
q − σ̃−1

q )

λπ =
Φθ(1− τ)(σ−1 + η)(1 + η)

Γκ
+

(1− Φ)θ(σ−1 + η)

κ
by = (ϱτ − (1− β)ωσ−1)

bq = (1− β)(1− ω)(1− σ−1
q )

bξ = (1− β)(1− ω).

When instead ν is calibrated at 0.05 then the parameters change to
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Table 3: Derived parameters when ν = 0.01

q = 10.47 q̄ = 12.12

τ = 0.2011 Y = 0.8750

σq = 0.1367 σ̃q = 1

δ = 0.0836

.
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